Do you want to publish a course? Click here

Imaging Spectroscopy of CME-Associated Solar Radio Bursts

60   0   0.0 ( 0 )
 Added by Sherry Chhabra
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first results of a solar radio event observed with the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) at metric wavelengths. We examine a complex event consisting of multiple radio sources/bursts associated with a fast coronal mass ejection (CME) and an M2.1 GOES soft X-ray flare from 2015 September 20. Images of 9--s cadence are used to analyze the event over a 120-minute period, and solar emission is observed out to a distance of $approx3.5,R_odot$, with an instantaneous bandwidth covering 22~MHz within the frequency range of 40--70~MHz. We present our results from the investigation of the radio event, focusing particularly on one burst source that exhibits outward motion, which we classify as a moving type IV burst. We image the event at multiple frequencies and use the source centroids to obtain the velocity for the outward motion. Spatial and temporal comparison with observations of the CME in white light from the LASCO(C2) coronagraph, indicates an association of the outward motion with the core of the CME. By performing graduated-cylindrical-shell (GCS) reconstruction of the CME, we constrain the density in the volume. The electron plasma frequency obtained from the density estimates do not allow us to completely dismiss plasma emission as the underlying mechanism. However, based on source height and smoothness of the emission in frequency and time, we argue that gyrosynchrotron is the more plausible mechanism. We use gyrosynchrotron spectral fitting techniques to estimate the evolving physical conditions during the outward motion of this burst source.



rate research

Read More

We investigate the physical conditions of the sources of two metric Type-II bursts associated with CME expansions with the aim of verifying the relationship between the shocks and the CMEs, comparing the heights of the radio sources and the heights of the EUV waves associated with the CMEs. The heights of the EUV waves associated with the events were determined in relation to the wave fronts. The heights of the shocks were estimated by applying two different density models to the frequencies of the Type-II emissions and compared with the heights of the EUV waves. For the 13 June 2010 event, with band-splitting, the shock speed was estimated from the frequency drifts of the upper and lower branches of the harmonic lane, taking into account the H/F frequency ratio fH/fF = 2. Exponential fits on the intensity maxima of the branches revealed to be more consistent with the morphology of the spectrum of this event. For the 6 June 2012 event, with no band-splitting and with a clear fundamental lane on the spectrum, the shock speed was estimated directly from the frequency drift of the fundamental emission, determined by linear fit on the intensity maxima of the lane. For each event, the most appropriate density model was adopted to estimate the physical parameters of the radio source. The 13 June 2010 event presented a shock speed of 664-719 km/s, consistent with the average speed of the EUV wave fronts of 609 km/s. The 6 June 2012 event was related to a shock of speed of 211-461 km/s, also consistent with the average speed of the EUV wave fronts of 418 km/s. For both events, the heights of the EUV wave revealed to be compatible with the heights of the radio source, assuming a radial propagation of the shock.
Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, it is an outstanding question why type III bursts are more frequently observed than U-bursts or J-bursts. We use LOFAR imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. The radio sources infer a magnetic loop 1 solar radius in altitude, with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c, with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III bursts to be more frequently observed. The large instability distances required before Langmuir waves are produced by some electron beams, and the small magnitude of the background density gradients make closed loops less facilitating for radio emission than loops that extend into interplanetary space.
Drift pairs are an unusual type of fine structure sometimes observed in dynamic spectra of solar radio emission. They appear as two identical short narrowband drifting stripes separated in time; both positive and negative frequency drifts are observed. Using the Low Frequency Array (LOFAR), we report unique observations of a cluster of drift pair bursts in the frequency range of 30-70 MHz made on 12 July 2017. Spectral imaging capabilities of the instrument have allowed us for the first time to resolve the temporal and frequency evolution of the source locations and sizes at a fixed frequency and along the drifting pair components. Sources of two components of a drift pair have been imaged and found to propagate in the same direction along nearly the same trajectories. Motion of the second component source is delayed in time with respect to that of the first one. The source trajectories can be complicated and non-radial; positive and negative frequency drifts correspond to opposite propagation directions. The drift pair bursts with positive and negative frequency drifts, as well as the associated broadband type-III-like bursts, are produced in the same regions. The visible source velocities are variable from zero to a few $10^4$ (up to ${sim 10^5}$) km/s, which often exceeds the velocities inferred from the drift rate ($sim 10^4$ km/s). The visible source sizes are of about $10-18$; they are more compact than typical type III sources at the same frequencies. The existing models of drift pair bursts cannot adequately explain the observed features. We discuss the key issues that need to be addressed, and in particular the anisotropic scattering of the radio waves. The broadband bursts observed simultaneously with the drift pairs differ in some aspects from common type III bursts and may represent a separate type of emission.
Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio-wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the LOw Frequency Array (LOFAR), an instrument with high time resolution that also permits imaging at scales much shorter than those corresponding to radio-wave propagation in the corona. The observations demonstrate that radio-wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 hours. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz/s and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however they possess some of the characteristics of electron-cyclotron maser emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا