Do you want to publish a course? Click here

Recovery of nonlinear terms for reaction diffusion equations from boundary measurements

91   0   0.0 ( 0 )
 Added by Yavar Kian
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider the inverse problem of determining a general semilinear term appearing in nonlinear parabolic equations. For this purpose, we derive a new criterion that allows to prove global recovery of some general class of semilinear terms from lateral boundary measurements of solutions of the equation with initial condition fixed at zero. More precisely, we prove, for what seems to be the first time, the unique and stable recovery of general semilinear terms depending on time and space variables independently of the solution of the nonlinear equation from the knowledge of the parabolic Dirichlet-to-Neumann map associated with the solution of the equation with initial condition fixed at zero. Our approach is based on the second linearization of the inverse problem under consideration.



rate research

Read More

185 - Yihong Du , Alejandro Garriz , 2020
We study a family of reaction-diffusion equations that present a doubly nonlinear character given by a combination of the $p$-Laplacian and the porous medium operators. We consider the so-called slow diffusion regime, corresponding to a degenerate behaviour at the level 0, ormalcolor in which nonnegative solutions with compactly supported initial data have a compact support for any later time. For some results we will also require $pge2$ to avoid the possibility of a singular behaviour away from 0. Problems in this family have a unique (up to translations) travelling wave with a finite front. When the initial datum is bounded, radially symmetric and compactly supported, we will prove that solutions converging to 1 (which exist, as we show, for all the reaction terms under consideration for wide classes of initial data) do so by approaching a translation of this unique traveling wave in the radial direction, but with a logarithmic correction in the position of the front when the dimension is bigger than one. As a corollary we obtain the asymptotic location of the free boundary and level sets in the non-radial case up to an error term of size $O(1)$. In dimension one we extend our results to cover the case of non-symmetric initial data, as well as the case of bounded initial data with supporting sets unbounded in one direction of the real line. A main technical tool of independent interest is an estimate for the flux. Most of our results are new even for the special cases of the porous medium equation and the $p$-Laplacian evolution equation.
We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binary alloys with induced reaction and type-I superconductors. The second one is the Cahn-Hilliard type equation introduced by Bertozzi et al. to describe image inpainting. Here we take a free energy functional which accounts for nonlocal interactions. Our choice is motivated by the work of Giacomin and Lebowitz who showed that the rigorous physical derivation of the Cahn-Hilliard equation leads to consider nonlocal functionals. The equations also have a transport term with a given velocity field and are subject to a homogenous Neumann boundary condition for the chemical potential, i.e., the first variation of the free energy functional. We first establish the well-posedness of the corresponding initial and boundary value problems in a weak setting. Then we consider such problems as dynamical systems and we show that they have bounded absorbing sets and global attractors.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is established via a contraction mapping argument, taking advantage of a novel approach that utilizes the formula produced by the unified transform method of Fokas for the forced linear heat equation to obtain linear estimates analogous to those previously derived for the nonlinear Schrodinger, Korteweg-de Vries and good Boussinesq equations. Thus, the present work extends the recently introduced unified transform method approach to well-posedness from dispersive equations to diffusive ones.
126 - Franc{c}ois Hamel 2021
This paper is devoted to the study of the large time dynamics of bounded solutions of reaction-diffusion equations with unbounded initial support in R N. We first prove a general Freidlin-G{a}rtner type formula for the spreading speeds of the solutions in any direction. This formula holds under general assumptions on the reaction and for solutions emanating from initial conditions with general unbounded support, whereas most of earlier results were concerned with more specific reactions and compactly supported or almost-planar initial conditions. We also prove some results of independent interest on some conditions guaranteeing the spreading of solutions with large initial support and the link between these conditions and the existence of traveling fronts with positive speed. Furthermore, we show some flattening properties of the level sets of the solutions if initially supported on subgraphs. We also investigate the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP equations, we prove some asymptotic one-dimensional symmetry properties for the elements of the $Omega$-limit set of the solutions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. Lastly, we show some logarithmicin-time estimates of the lag of the position of the solutions with respect to that of a planar front with minimal speed, for initial conditions which are supported on subgraphs with logarithmic growth at infinity. The proofs use a mix of ODE and PDE methods, as well as some geometric arguments. The paper also contains some related conjectures and open problems.
We prove optimal boundary regularity for bounded positive weak solutions of fast diffusion equations in smooth bounded domains. This solves a problem raised by Berryman and Holland in 1980 for these equations in the subcritical and critical regimes. Our proof of the a priori estimates uses a geometric type structure of the fast diffusion equations, where an important ingredient is an evolution equation for a curvature-like quantity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا