We propose using Network Science as a complementary tool to analyze player and team behavior during a football match. Specifically, we introduce four kinds of networks based on different ways of interaction between players. Our approachs main novelty is to use tracking datasets to create football tracking networks, instead of constructing and analyzing the traditional networks based on events. In this way, we are able to capture player interactions that go beyond passes and introduce the concepts of (a) Ball Flow Networks, (b) Marking Networks, (c) Signed Proximity Networks and (d) Functional Coordination Networks. After defining the methodology for creating each kind of network, we show some examples using tracking datasets from four different matches of LaLiga Santander. Finally, we discuss some of the applications, limitations, and further improvements of football tracking networks.