We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $mathcal{R}$. Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-$N$ expansion of supersymmetric partition functions for an infinite class of three-dimensional $mathcal{N}=2$ SCFTs of class $mathcal{R}$. We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS$_4$ black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.
We construct supersymmetric $AdS_5times Sigma$ solutions of $D=7$ gauged supergravity, where $Sigma$ is a two-dimensional orbifold known as a spindle. These uplift on $S^4$ to solutions of $D=11$ supergravity which have orbifold singularites. We argue that the solutions are dual to $d=4$, $mathcal{N}=1$ SCFTs that arise from $N$ M5-branes wrapped on a spindle, embedded as a holomorphic curve inside a Calabi-Yau three-fold. In contrast to the usual topological twist solutions, the superconformal R-symmetry mixes with the isometry of the spindle in the IR, and we verify this via a field theory calculation, as well as reproducing the gravity formula for the central charge.
We study three-dimensional superconformal field theories on wrapped M5-branes. Applying the gauge/gravity duality and the recently proposed 3d-3d relation, we deduce quantitative predictions for the perturbative free energy of a Chern-Simons theory on hyperbolic 3-space. Remarkably, the perturbative expansion is expected to terminate at two-loops in the large N limit. We check the correspondence numerically in a number of examples, and confirm the N^3 scaling with precise coefficients.
We construct a consistent Kaluza-Klein reduction of $D=11$ supergravity on $Sigma_2times S^4$, where $Sigma_2=S^2,mathbb{R}^2$ or $H^2$, or a quotient thereof, at the level of the bosonic fields. The result is a gauged $N=4$, $D=5$ supergravity theory coupled to three vector multiplets, with the gauging lying in an $SO(2)times SE(3)subset SO(5,3)$ subgroup of the $SO(1,1)times SO(5,3)$ global symmetry group of the ungauged theory. For $Sigma_2=H^2$, the $D=5$ theory has a maximally supersymmetric $AdS_5$ vacuum which uplifts to the known solution of $D=11$ supergravity corresponding to M5-branes wrapping a Riemann surface with genus greater than one and dual to an $N=2$ SCFT in $d=4$. For $Sigma_2=S^2$, we find two $AdS_5$ solutions, one of which is new, and both of which are unstable. There is an additional subtruncation to an $N=2$ gauged supergravity coupled to two vector multiplets, with very special real manifold $SO(1,1)times SO(1,1)$, and a single hypermultiplet, with quaternionic Kahler manifold $SU(2,1)/S[U(2)times U(1)]$ and gauging associated with an $SO(2)timesmathbb{R}subset SU(2,1)$ subgroup.
Gauged off-shell Maxwell-Einstein supergravity in six dimensions with N=(1,0) supersymmetry has a higher derivative extension afforded by a supersymmetrized Riemann squared term. This theory admits a supersymmetric Minkowski x S^2 compactification with a U(1) monopole of unit charge on S^2. We determine the full spectrum of the theory on this background. We also determine the spectrum on a non-supersymmetric version of this compactification in which the monopole charge is different from unity, and we find the peculiar feature that there are massless gravitini in a representation of the S^2 isometry group determined by the monopole charge.
We present exact classical solutions of the higher-derivative theory that describes the dynamics of the position modulus of a probe brane within a five-dimensional bulk. The solutions can be interpreted as static or time-dependent throats connecting two parallel branes. In the nonrelativistic limit the brane action is reduced to that of the Galileon theory. We derive exact solutions for the Galileon, which reproduce correctly the shape of the throats at large distances, but fail to do so for their central part. We also determine the parameter range for which the Vainshtein mechanism is reproduced within the brane theory.
Nikolay Bobev
,Anthony M. Charles
,Dongmin Gang
.
(2020)
.
"Higher-Derivative Supergravity, Wrapped M5-branes, and Theories of Class $mathcal{R}$"
.
Valentin Reys
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا