No Arabic abstract
The first time one of us (G.P.) encountered Earle was in Summer 1966, when she was directed to study Earles papers on radiative corrections to quasi-elastic electron scattering. The suggestion had come from Bruno Touschek, at the time head of the theoretical physics group at the Frascati National Laboratories near Rome. About the same time, Earle came from MIT to visit University of Rome and Frascati. G.P. was a young post-graduate, who had studied Earles papers and was awed by his already impressive scientific figure. After almost 40 years had passed, Earle visited Italy with his wife Ruth, making Frascati their base for an extended visit of almost a month. They were housed in what was then the laboratory hostel for foreign visitors, a small villa higher up above the hill, toward the town of Frascati. Since then, we became close friends, a friendship which included both his family and ours, and which has been very important for us. In memory of that first visit and in gratitude for the many years of friendship, we will tell here a story of infrared radiative corrections to charged particle scattering, to which Earles papers gave an important contribution.
The production rate and kinematic distributions of isolated photon pairs produced in hadron interactions are studied. The effects of the initial-state multiple soft-gluon emission to the scattering subprocesses q-qbar, qg, and gg to gamma gamma X are resummed with the Collins-Soper-Sterman soft gluon resummation formalism. The effects of fragmentation photons from qg to gamma q, followed by q to gamma X, are also studied. The results are compared with data from the Fermilab Tevatron collider. A prediction of the production rate and kinematic distributions of the diphoton pair in proton-nucleon reactions is also presented.
We review the literature on possible violations of the superposition principle for electromagnetic fields in vacuum from the earliest studies until the emergence of renormalized QED at the end of the 1940s. The exposition covers experimental work on photon-photon scattering and the propagation of light in external electromagnetic fields and relevant theoretical work on nonlinear electrodynamic theories (Born-Infeld theory and QED) until the year 1949. To enrich the picture, pieces of reminiscences from a number of (theoretical) physicists on their work in this field are collected and included or appended.
I discuss various aspects of archeoastronomy concentrating on physical artifacts (i.e., not including ethno-archeoastronomy) focusing on the period that ended about 2000 years ago. I present examples of artifacts interpreted as showing the interest of humankind in understanding celestial phenomena and using these to synchronize calendars and predict future celestial and terrestrial events. I stress the difficulty of identifying with a high degree of confidence that these artifacts do indeed pertain to astronomy and caution against the over-interpretation of the finds as definite evidence. With these in mind, I point to artifacts that seem to indicate a human fascination with megalithic stone circles and megalithic alignments starting from at least 11000 BCE, and to other items presented as evidence for Neolithic astronomical interests dating to even 20000 BCE or even before. I discuss the geographical and temporal spread of megalithic sites associated with astronomical interpretations searching for synchronicity or for a possible single point of origin. A survey of a variety of artifacts indicates that the astronomical development in antiquity did not happen simultaneously at different locations, but may be traced to megalithic stone circles and other megalithic structures with possible astronomical connections originating in the Middle East, specifically in the Fertile Crescent area. The effort of ancient societies to erect these astronomical megalithic sites and to maintain a corpus of astronomy experts does not appear excessive.
We perform a threshold resummation calculation for the associated production of gluinos and gauginos at the LHC to the next-to-leading logarithmic accuracy. Analytical results are presented for the process-dependent soft anomalous dimension and the hard function. The resummed results are matched to a full next-to-leading order calculation, for which we have generalised the previously known results to the case of supersymmetric scenarios featuring non-universal squark masses. Numerically, the next-to-leading logarithmic contributions increase the total next-to-leading order cross section by 7 to 20% for central scale choices and gluino masses of 3 to 6 TeV, respectively, and reduce its scale dependence typically from up to $pm12$% to below $pm3$%.
We analyze soft and collinear gluon resummation effects at the N$^3$LL level for Standard Model Higgs boson production via gluon fusion $ggto H$ and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the N$^3$LL and NNLL level, respectively. We introduce refinements in the treatment of quark mass effects and subleading collinear gluon effects within the resummation. Soft and collinear gluon resummation effects amount to up to about 5% beyond the fixed-order results for scalar and pseudoscalar Higgs boson production.