Do you want to publish a course? Click here

Quantization of edge currents along magnetic interfaces: A K-theory approach

55   0   0.0 ( 0 )
 Added by Giuseppe De Nittis
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The purpose of this paper is to investigate the propagation of topological currents along magnetic interfaces (also known as magnetic walls) of a two-dimensional material. We consider tight-binding magnetic models associated to generic magnetic multi-interfaces and describe the K-theoretical setting in which a bulk-interface duality can be derived. Then, the (trivial) case of a localized magnetic field and the (non trivial) case of the Iwatsuka magnetic field are considered in full detail. This is a pedagogical preparatory work that aims to anticipate the study of more complicated multi-interface magnetic systems.



rate research

Read More

We study the propagation of wavepackets along weakly curved interfaces between topologically distinct media. Our Hamiltonian is an adiabatic modulation of Dirac operators omnipresent in the topological insulators literature. Using explicit formulas for straight edges, we construct a family of solutions that propagates, for long times, unidirectionally and dispersion-free along the curved edge. We illustrate our results through various numerical simulations.
We study transport properties of a Chalker-Coddington type model in the plane which presents asymptotically pure anti-clockwise rotation on the left and clockwise rotation on the right. We prove delocalisation in the sense that the absolutely continuous spectrum covers the whole unit circle. The result is of topological nature and independent of the details of the model.
80 - F. Lizzi , P. Vitale , A. Zampini 2003
We present a brief review of the fuzzy disc, the finite algebra approximating functions on a disc, which we have introduced earlier. We also present a comparison with recent papers of Balachandran, Gupta and Kurkc{c}{u}ov{g}lu, and of Pinzul and Stern, aimed at the discussion of edge states of a Chern-Simons theory.
We investigate some foundational issues in the quantum theory of spin transport, in the general case when the unperturbed Hamiltonian operator $H_0$ does not commute with the spin operator in view of Rashba interactions, as in the typical models for the Quantum Spin Hall effect. A gapped periodic one-particle Hamiltonian $H_0$ is perturbed by adding a constant electric field of intensity $varepsilon ll 1$ in the $j$-th direction, and the linear response in terms of a $S$-current in the $i$-th direction is computed, where $S$ is a generalized spin operator. We derive a general formula for the spin conductivity that covers both the choice of the conventional and of the proper spin current operator. We investigate the independence of the spin conductivity from the choice of the fundamental cell (Unit Cell Consistency), and we isolate a subclass of discrete periodic models where the conventional and the proper $S$-conductivity agree, thus showing that the controversy about the choice of the spin current operator is immaterial as far as models in this class are concerned. As a consequence of the general theory, we obtain that whenever the spin is (almost) conserved, the spin conductivity is (approximately) equal to the spin-Chern number. The method relies on the characterization of a non-equilibrium almost-stationary state (NEASS), which well approximates the physical state of the system (in the sense of space-adiabatic perturbation theory) and allows moreover to compute the response of the adiabatic $S$-current as the trace per unit volume of the $S$-current operator times the NEASS. This technique can be applied in a general framework, which includes both discrete and continuum models.
By an integral equation approach to the time-harmonic classical Maxwell equations, we describe the dispersion in the nonretarded frequency regime of the edge plasmon-polariton (EPP) on a semi-infinite flat sheet. The sheet has an arbitrary, physically admissible, tensor valued and spatially homogeneous conductivity, and serves as a model for a family of two-dimensional conducting materials. We formulate a system of integral equations for the electric field tangential to the sheet in a homogeneous and isotropic ambient medium. We show how this system is simplified via a length scale separation. This view entails the quasi-electrostatic approximation, by which the tangential electric field is replaced by the gradient of a scalar potential, $varphi$. By the Wiener-Hopf method, we solve an integral equation for $varphi$ in some generality. The EPP dispersion relation comes from the elimination of a divergent limiting Fourier integral for $varphi$ at the edge. We connect the existence, or lack thereof, of the EPP dispersion relation to the index for Wiener-Hopf integral equations, an integer of topological character. We indicate that the values of this index may express an asymmetry due to the material anisotropy in the number of wave modes propagating on the sheet away from the edge with respect to the EPP direction of propagation. We discuss extensions such as the setting of two semi-infinite, coplanar sheets. Our theory forms a generalization of the treatment by Volkov and Mikhailov (1988 Sov. Phys. JETP 67 1639).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا