Do you want to publish a course? Click here

Simulated X-ray Emission in Galaxy Clusters with Feedback from Active Galactic Nuclei

123   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

To investigate the effect of feedback from active galactic nuclei (AGN) on their surrounding medium, we study the diffuse X-ray emission from galaxy groups and clusters by coupling the Astrophysical Plasma Emission Code (APEC) with the cosmological hydrodynamic simulation involving AGN feedback. We construct a statistical sample of synthetic Chandra X-ray photon maps to observationally characterize the effect of AGN on the ambient medium. We show that AGN are effective in displacing the hot X-ray emitting gas from the centers of groups and clusters, and that these signatures remain evident in observations of the X-ray surface brightness profiles.



rate research

Read More

The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (AGN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
We model the triggering of Active Galactic Nuclei (AGN) in galaxy clusters using the semi- analytic galaxy formation model SAGE (?). We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with that of AGN and galaxies with intense star formation from a sample of low-redshift, relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if $2.5times10^{-14} < P_{ram} < 2.5times10^{-13}$ Pa and $P_{ram} > 2P_{internal}$; this is consistent with expectations from hydrodynamical simulations of ram-pressure induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
In this study we quantify the properties of the gas and dark matter around active galactic nuclei (AGN) in simulated galaxy groups and clusters and analyze the effect of AGN feedback on the surrounding intra-cluster (group) medium. Our results suggest downsizing of AGN luminosity with host halo mass, supporting the results obtained from clustering studies of AGN. By examining the temperature and density distribution of the gas in the vicinity of AGN we show that due to feedback from the central engine, the gas gets displaced from the centre of the group/cluster resulting in a reduction of the density but an enhancement of temperature. We show that these effects are pronounced at both high and low redshifts and propose new observables to study the effect of feedback in higher redshift galaxies. We also show that the average stellar mass is decreased in halos in the presence of AGN feedback confirming claims from previous studies. Our work for the first time uses a fully cosmological-hydrodynamic simulation to evaluate the global effects of AGN feedback on their host dark matter halos as well as galaxies at scales of galaxy groups and clusters.
We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions; entropy profiles outside the core; and the X-ray luminosity-mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative cooling; supernova and AGN feedback largely serve as regulation mechanisms, moving heated gas out of galaxies and away from cluster cores. However, our simulations fail to address a number of serious issues; for example, they are incapable of reproducing the shape and diversity of the observed entropy profiles within the core region. We also show that the stellar and black hole masses are sensitive to numerical resolution, particularly the gravitational softening length; a smaller value leads to more efficient black hole growth at early times and a smaller central galaxy.
We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of $r_{500}$. Our analysis employs high quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of $0.2 < z < 0.7$. In total, our study involves 176 AGN with bright ($R <23$) optical counterparts above a $0.5-8.0$ keV flux limit of $10^{-14} rm{erg} rm{cm}^{-2} rm{s}^{-1}$. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is $sim 3 $ times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at $sim 2.5 r_{500}$. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا