The Strongish Planted Clique Hypothesis and Its Consequences


Abstract in English

We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time $n^{Omega(log{n})}$ (so that the state-of-the-art running time of $n^{O(log n)}$ is optimal up to a constant in the exponent). We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter $k$: Densest $k$-Subgraph, Smallest $k$-Edge Subgraph, Densest $k$-Subhypergraph, Steiner $k$-Forest, and Directed Steiner Network with $k$ terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves $o(k)$-approximation for Densest $k$-Subgraph. This inapproximability ratio improves upon the previous best $k^{o(1)}$ factor from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms with parameter $k$. Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, which improves the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential Time Hypothesis.

Download