Do you want to publish a course? Click here

Is Private Learning Possible with Instance Encoding?

264   0   0.0 ( 0 )
 Added by Nicholas Carlini
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A private machine learning algorithm hides as much as possible about its training data while still preserving accuracy. In this work, we study whether a non-private learning algorithm can be made private by relying on an instance-encoding mechanism that modifies the training inputs before feeding them to a normal learner. We formalize both the notion of instance encoding and its privacy by providing two attack models. We first prove impossibility results for achieving a (stronger) model. Next, we demonstrate practical attacks in the second (weaker) attack model on InstaHide, a recent proposal by Huang, Song, Li and Arora [ICML20] that aims to use instance encoding for privacy.



rate research

Read More

How can multiple distributed entities collaboratively train a shared deep net on their private data while preserving privacy? This paper introduces InstaHide, a simple encryption of training images, which can be plugged into existing distributed deep learning pipelines. The encryption is efficient and applying it during training has minor effect on test accuracy. InstaHide encrypts each training image with a one-time secret key which consists of mixing a number of randomly chosen images and applying a random pixel-wise mask. Other contributions of this paper include: (a) Using a large public dataset (e.g. ImageNet) for mixing during its encryption, which improves security. (b) Experimental results to show effectiveness in preserving privacy against known attacks with only minor effects on accuracy. (c) Theoretical analysis showing that successfully attacking privacy requires attackers to solve a difficult computational problem. (d) Demonstrating that use of the pixel-wise mask is important for security, since Mixup alone is shown to be insecure to some some efficient attacks. (e) Release of a challenge dataset https://github.com/Hazelsuko07/InstaHide_Challenge Our code is available at https://github.com/Hazelsuko07/InstaHide
107 - Lichao Sun , Yingbo Zhou , Ji Wang 2019
Privacy-preserving deep learning is crucial for deploying deep neural network based solutions, especially when the model works on data that contains sensitive information. Most privacy-preserving methods lead to undesirable performance degradation. Ensemble learning is an effective way to improve model performance. In this work, we propose a new method for teacher ensembles that uses more informative network outputs under differential private stochastic gradient descent and provide provable privacy guarantees. Out method employs knowledge distillation and hint learning on intermediate representations to facilitate the training of student model. Additionally, we propose a simple weighted ensemble scheme that works more robustly across different teaching settings. Experimental results on three common image datasets benchmark (i.e., CIFAR10, MINST, and SVHN) demonstrate that our approach outperforms previous state-of-the-art methods on both performance and privacy-budget.
Federated Learning (FL) is a collaborative scheme to train a learning model across multiple participants without sharing data. While FL is a clear step forward towards enforcing users privacy, different inference attacks have been developed. In this paper, we quantify the utility and privacy trade-off of a FL scheme using private personalized layers. While this scheme has been proposed as local adaptation to improve the accuracy of the model through local personalization, it has also the advantage to minimize the information about the model exchanged with the server. However, the privacy of such a scheme has never been quantified. Our evaluations using motion sensor dataset show that personalized layers speed up the convergence of the model and slightly improve the accuracy for all users compared to a standard FL scheme while better preventing both attribute and membership inferences compared to a FL scheme using local differential privacy.
The rapid adoption of machine learning has increased concerns about the privacy implications of machine learning models trained on sensitive data, such as medical records or other personal information. To address those concerns, one promising approach is Private Aggregation of Teacher Ensembles, or PATE, which transfers to a student model the knowledge of an ensemble of teacher models, with intuitive privacy provided by training teachers on disjoint data and strong privacy guaranteed by noisy aggregation of teachers answers. However, PATE has so far been evaluated only on simple classification tasks like MNIST, leaving unclear its utility when applied to larger-scale learning tasks and real-world datasets. In this work, we show how PATE can scale to learning tasks with large numbers of output classes and uncurated, imbalanced training data with errors. For this, we introduce new noisy aggregation mechanisms for teacher ensembles that are more selective and add less noise, and prove their tighter differential-privacy guarantees. Our new mechanisms build on two insights: the chance of teacher consensus is increased by using more concentrated noise and, lacking consensus, no answer need be given to a student. The consensus answers used are more likely to be correct, offer better intuitive privacy, and incur lower-differential privacy cost. Our evaluation shows our mechanisms improve on the original PATE on all measures, and scale to larger tasks with both high utility and very strong privacy ($varepsilon$ < 1.0).
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i subseteq U$ of items. We want an ($epsilon$,$delta$)-differentially private algorithm which outputs a subset $S subset cup_i W_i$ such that the size of $S$ is as large as possible. The problem arises in countless real world applications; it is particularly ubiquitous in natural language processing (NLP) applications as vocabulary extraction. For example, discovering words, sentences, $n$-grams etc., from private text data belonging to users is an instance of the set union problem. Known algorithms for this problem proceed by collecting a subset of items from each user, taking the union of such subsets, and disclosing the items whose noisy counts fall above a certain threshold. Crucially, in the above process, the contribution of each individual user is always independent of the items held by other users, resulting in a wasteful aggregation process, where some item counts happen to be way above the threshold. We deviate from the above paradigm by allowing users to contribute their items in a $textit{dependent fashion}$, guided by a $textit{policy}$. In this new setting ensuring privacy is significantly delicate. We prove that any policy which has certain $textit{contractive}$ properties would result in a differentially private algorithm. We design two new algorithms, one using Laplace noise and other Gaussian noise, as specific instances of policies satisfying the contractive properties. Our experiments show that the new algorithms significantly outperform previously known mechanisms for the problem.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا