We evaluate the variance of coefficients of the characteristic polynomial for binary quantum graphs using a dynamical approach. This is the first example of a chaotic quantum system where a spectral statistic can be evaluated in terms of periodic orbits without taking the semiclassical limit, which is the limit of large graphs. The variance depends on the size of two classes of primitive pseudo orbits (sets of periodic orbits); pseudo orbits without self-intersections and those where all the self-intersections are 2-encounters at a single vertex. To show other pseudo orbits do not contribute we employ a parity argument for Lyndon word decompositions. For families of binary graphs with an increasing number of bonds, we show the periodic orbit formula approaches a universal constant independent of the coefficient of the polynomial. This constant is obtained by counting the total number of primitive pseudo orbits of a given length. To count periodic orbits and pseudo orbits we exploit further connections between orbits on binary graphs and Lyndon words.