Do you want to publish a course? Click here

Complete Dynamical Evaluation of the Characteristic Polynomial of Binary Quantum Graphs

113   0   0.0 ( 0 )
 Added by Jonathan Harrison
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We evaluate the variance of coefficients of the characteristic polynomial for binary quantum graphs using a dynamical approach. This is the first example of a chaotic quantum system where a spectral statistic can be evaluated in terms of periodic orbits without taking the semiclassical limit, which is the limit of large graphs. The variance depends on the size of two classes of primitive pseudo orbits (sets of periodic orbits); pseudo orbits without self-intersections and those where all the self-intersections are 2-encounters at a single vertex. To show other pseudo orbits do not contribute we employ a parity argument for Lyndon word decompositions. For families of binary graphs with an increasing number of bonds, we show the periodic orbit formula approaches a universal constant independent of the coefficient of the polynomial. This constant is obtained by counting the total number of primitive pseudo orbits of a given length. To count periodic orbits and pseudo orbits we exploit further connections between orbits on binary graphs and Lyndon words.



rate research

Read More

The Euler characteristic $chi =|V|-|E|$ and the total length $mathcal{L}$ are the most important topological and geometrical characteristics of a metric graph. Here, $|V|$ and $|E|$ denote the number of vertices and edges of a graph. The Euler characteristic determines the number $beta$ of independent cycles in a graph while the total length determines the asymptotic behavior of the energy eigenvalues via the Weyls law. We show theoretically and confirm experimentally that the Euler characteristic can be determined (heard) from a finite sequence of the lowest eigenenergies $lambda_1, ldots, lambda_N$ of a simple quantum graph, without any need to inspect the system visually. In the experiment quantum graphs are simulated by microwave networks. We demonstrate that the sequence of the lowest resonances of microwave networks with $beta leq 3$ can be directly used in determining whether a network is planar, i.e., can be embedded in the plane. Moreover, we show that the measured Euler characteristic $chi$ can be used as a sensitive revealer of the fully connected graphs.
We show that the averaged characteristic polynomial and the averaged inverse characteristic polynomial, associated with Hermitian matrices whose elements perform a random walk in the space of complex numbers, satisfy certain partial differential, diffusion-like, equations. These equations are valid for matrices of arbitrary size. Their solutions can be given an integral representation that allows for a simple study of their asymptotic behaviors for a broad range of initial conditions.
Linearity of a dynamical entropy means that the dynamical entropy of the n-fold composition of a dynamical map with itself is equal to n times the dynamical entropy of the map for every positive integer n. We show that the quantum dynamical entropy introduced by Slomczynski and Zyczkowski is nonlinear in the time interval between successive measurements of a quantum dynamical system. This is in contrast to Kolmogorov-Sinai dynamical entropy for classical dynamical systems, which is linear in time. We also compute the exact values of quantum dynamical entropy for the Hadamard walk with varying Luders-von Neumann instruments and partitions.
The Hamiltonian action of a Lie group on a symplectic manifold induces a momentum map generalizing Noethers conserved quantity occurring in the case of a symmetry group. Then, when a Hamiltonian function can be written in terms of this momentum map, the Hamiltonian is called `collective. Here, we derive collective Hamiltonians for a series of models in quantum molecular dynamics for which the Lie group is the composition of smooth invertible maps and unitary transformations. In this process, different fluid descriptions emerge from different factorization schemes for either the wavefunction or the density operator. After deriving this series of quantum fluid models, we regularize their Hamiltonians for finite $hbar$ by introducing local spatial smoothing. In the case of standard quantum hydrodynamics, the $hbar e0$ dynamics of the Lagrangian path can be derived as a finite-dimensional canonical Hamiltonian system for the evolution of singular solutions called `Bohmions, which follow Bohmian trajectories in configuration space. For molecular dynamics models, application of the smoothing process to a new factorization of the density operator leads to a finite-dimensional Hamiltonian system for the interaction of multiple (nuclear) Bohmions and a sequence of electronic quantum states.
116 - JM Harrison , E Swindle 2018
We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features of the prototypical quantum star graph model. In particular, we show the spectrum is encoded in a secular equation with similar features. The secular equation of a quantum circulant graph takes two forms depending on whether the edge lengths respect the cyclic symmetry of the graph. When all the edge lengths are incommensurate, the spectral statistics correspond to those of random matrices from the Gaussian Orthogonal Ensemble according to the conjecture of Bohigas, Giannoni and Schmit. When the edge lengths respect the cyclic symmetry the spectrum decomposes into subspectra whose corresponding eigenfunctions transform according to irreducible representations of the cyclic group. We show that the subspectra exhibit intermediate spectral statistics and analyze the small and large parameter asymptotics of the two-point correlation function, applying techniques developed from star graphs. The particular form of the intermediate statistics differs from that seen for star graphs or Dirac rose graphs. As a further application, we show how the secular equations can be used to obtain spectral zeta functions using a contour integral technique. Results for the spectral determinant and vacuum energy of circulant graphs are obtained from the zeta functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا