Do you want to publish a course? Click here

Resource Allocation in One-dimensional Distributed Service Networks with Applications

75   0   0.0 ( 0 )
 Added by Nitish K Panigrahy
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider assignment policies that allocate resources to users, where both resources and users are located on a one-dimensional line. First, we consider unidirectional assignment policies that allocate resources only to users located to their left. We propose the Move to Right (MTR) policy, which scans from left to right assigning nearest rightmost available resource to a user, and contrast it to the Unidirectional Gale-Shapley (UGS) matching policy. While both policies among all unidirectional policies, minimize the expected distance traveled by a request (request distance), MTR is fairer. Moreover, we show that when user and resource locations are modeled by statistical point processes, and resources are allowed to satisfy more than one user, the spatial system under unidirectional policies can be mapped into bulk service queueing systems, thus allowing the application of many queueing theory results that yield closed form expressions. As we consider a case where different resources can satisfy different numbers of users, we also generate new results for bulk service queues. We also consider bidirectional policies where there are no directional restrictions on resource allocation and develop an algorithm for computing the optimal assignment which is more efficient than known algorithms in the literature when there are more resources than users. Numerical evaluation of performance of unidirectional and bidirectional allocation schemes yields design guidelines beneficial for resource placement. p{Finally, we present a heuristic algorithm, which leverages the optimal dynamic programming scheme for one-dimensional inputs to obtain approximate solutions to the optimal assignment problem for the two-dimensional scenario and empirically yields request distances within a constant factor of the optimal solution.



rate research

Read More

114 - Jiaqi Zhang , Keyou You , 2019
This paper proposes a distributed dual gradient tracking algorithm (DDGT) to solve resource allocation problems over an unbalanced network, where each node in the network holds a private cost function and computes the optimal resource by interacting only with its neighboring nodes. Our key idea is the novel use of the distributed push-pull gradient algorithm (PPG) to solve the dual problem of the resource allocation problem. To study the convergence of the DDGT, we first establish the sublinear convergence rate of PPG for non-convex objective functions, which advances the existing results on PPG as they require the strong-convexity of objective functions. Then we show that the DDGT converges linearly for strongly convex and Lipschitz smooth cost functions, and sublinearly without the Lipschitz smoothness. Finally, experimental results suggest that DDGT outperforms existing algorithms.
Most large web-scale applications are now built by composing collections (from a few up to 100s or 1000s) of microservices. Operators need to decide how many resources are allocated to each microservice, and these allocations can have a large impact on application performance. Manually determining allocations that are both cost-efficient and meet performance requirements is challenging, even for experienced operators. In this paper we present AutoTune, an end-to-end tool that automatically minimizes resource utilization while maintaining good application performance.
A central issue of distributed computing systems is how to optimally allocate computing and storage resources and design data shuffling strategies such that the total execution time for computing and data shuffling is minimized. This is extremely critical when the computation, storage and communication resources are limited. In this paper, we study the resource allocation and coding scheme for the MapReduce-type framework with limited resources. In particular, we focus on the coded distributed computing (CDC) approach proposed by Li et al.. We first extend the asymmetric CDC (ACDC) scheme proposed by Yu et al. to the cascade case where each output function is computed by multiple servers. Then we demonstrate that whether CDC or ACDC is better depends on system parameters (e.g., number of computing servers) and task parameters (e.g., number of input files), implying that neither CDC nor ACDC is optimal. By merging the ideas of CDC and ACDC, we propose a hybrid scheme and show that it can strictly outperform CDC and ACDC. Furthermore, we derive an information-theoretic converse showing that for the MapReduce task using a type of weakly symmetric Reduce assignment, which includes the Reduce assignments of CDC and ACDC as special cases, the hybrid scheme with a corresponding resource allocation strategy is optimal, i.e., achieves the minimum execution time, for an arbitrary amount of computing servers and storage memories.
The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time.To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm that tackles the fair resource allocation problem in a distributed SDN control architecture. Our algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances in real-time.
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its advantages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا