Do you want to publish a course? Click here

Neural Network Compression Via Sparse Optimization

107   0   0.0 ( 0 )
 Added by Tianyi Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The compression of deep neural networks (DNNs) to reduce inference cost becomes increasingly important to meet realistic deployment requirements of various applications. There have been a significant amount of work regarding network compression, while most of them are heuristic rule-based or typically not friendly to be incorporated into varying scenarios. On the other hand, sparse optimization yielding sparse solutions naturally fits the compression requirement, but due to the limited study of sparse optimization in stochastic learning, its extension and application onto model compression is rarely well explored. In this work, we propose a model compression framework based on the recent progress on sparse stochastic optimization. Compared to existing model compression techniques, our method is effective and requires fewer extra engineering efforts to incorporate with varying applications, and has been numerically demonstrated on benchmark compression tasks. Particularly, we achieve up to 7.2 and 2.9 times FLOPs reduction with the same level of evaluation accuracy on VGG16 for CIFAR10 and ResNet50 for ImageNet compared to the baseline heavy models, respectively.



rate research

Read More

320 - Moritz Wolter 2020
Wavelets are well known for data compression, yet have rarely been applied to the compression of neural networks. This paper shows how the fast wavelet transform can be used to compress linear layers in neural networks. Linear layers still occupy a significant portion of the parameters in recurrent neural networks (RNNs). Through our method, we can learn both the wavelet bases and corresponding coefficients to efficiently represent the linear layers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks. Wavelet optimization adds basis flexibility, without large numbers of extra weights. Source code is available at https://github.com/v0lta/Wavelet-network-compression.
Deep neural networks (DNNs) frequently contain far more weights, represented at a higher precision, than are required for the specific task which they are trained to perform. Consequently, they can often be compressed using techniques such as weight pruning and quantization that reduce both the model size and inference time without appreciable loss in accuracy. However, finding the best compression strategy and corresponding target sparsity for a given DNN, hardware platform, and optimization objective currently requires expensive, frequently manual, trial-and-error experimentation. In this paper, we introduce a programmable system for model compression called Condensa. Users programmatically compose simple operators, in Python, to build more complex and practically interesting compression strategies. Given a strategy and user-provided objective (such as minimization of running time), Condensa uses a novel Bayesian optimization-based algorithm to automatically infer desirable sparsities. Our experiments on four real-world DNNs demonstrate memory footprint and hardware runtime throughput improvements of 188x and 2.59x, respectively, using at most ten samples per search. We have released a reference implementation of Condensa at https://github.com/NVlabs/condensa.
Abstracting neural networks with constraints they impose on their inputs and outputs can be very useful in the analysis of neural network classifiers and to derive optimization-based algorithms for certification of stability and robustness of feedback systems involving neural networks. In this paper, we propose a convex program, in the form of a Linear Matrix Inequality (LMI), to certify incremental quadratic constraints on the map of neural networks over a region of interest. These certificates can capture several useful properties such as (local) Lipschitz continuity, one-sided Lipschitz continuity, invertibility, and contraction. We illustrate the utility of our approach in two different settings. First, we develop a semidefinite program to compute guaranteed and sharp upper bounds on the local Lipschitz constant of neural networks and illustrate the results on random networks as well as networks trained on MNIST. Second, we consider a linear time-invariant system in feedback with an approximate model predictive controller parameterized by a neural network. We then turn the stability analysis into a semidefinite feasibility program and estimate an ellipsoidal invariant set for the closed-loop system.
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose a new graph convolutional neural network model for learning branch-and-bound variable selection policies, which leverages the natural variable-constraint bipartite graph representation of mixed-integer linear programs. We train our model via imitation learning from the strong branching expert rule, and demonstrate on a series of hard problems that our approach produces policies that improve upon state-of-the-art machine-learning methods for branching and generalize to instances significantly larger than seen during training. Moreover, we improve for the first time over expert-designed branching rules implemented in a state-of-the-art solver on large problems. Code for reproducing all the experiments can be found at https://github.com/ds4dm/learn2branch.
We present a new approach to solve the sparse approximation or best subset selection problem, namely find a $k$-sparse vector ${bf x}inmathbb{R}^d$ that minimizes the $ell_2$ residual $lVert A{bf x}-{bf y} rVert_2$. We consider a regularized approach, whereby this residual is penalized by the non-convex $textit{trimmed lasso}$, defined as the $ell_1$-norm of ${bf x}$ excluding its $k$ largest-magnitude entries. We prove that the trimmed lasso has several appealing theoretical properties, and in particular derive sparse recovery guarantees assuming successful optimization of the penalized objective. Next, we show empirically that directly optimizing this objective can be quite challenging. Instead, we propose a surrogate for the trimmed lasso, called the $textit{generalized soft-min}$. This penalty smoothly interpolates between the classical lasso and the trimmed lasso, while taking into account all possible $k$-sparse patterns. The generalized soft-min penalty involves summation over $binom{d}{k}$ terms, yet we derive a polynomial-time algorithm to compute it. This, in turn, yields a practical method for the original sparse approximation problem. Via simulations, we demonstrate its competitive performance compared to current state of the art.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا