No Arabic abstract
We explore pretraining strategies including choice of base corpus with the aim of choosing the best strategy for zero-shot multi-speaker end-to-end synthesis. We also examine choice of neural vocoder for waveform synthesis, as well as acoustic configurations used for mel spectrograms and final audio output. We find that fine-tuning a multi-speaker model from found audiobook data that has passed a simple quality threshold can improve naturalness and similarity to unseen target speakers of synthetic speech. Additionally, we find that listeners can discern between a 16kHz and 24kHz sampling rate, and that WaveRNN produces output waveforms of a comparable quality to WaveNet, with a faster inference time.
In this work, we extend ClariNet (Ping et al., 2019), a fully end-to-end speech synthesis model (i.e., text-to-wave), to generate high-fidelity speech from multiple speakers. To model the unique characteristic of different voices, low dimensional trainable speaker embeddings are shared across each component of ClariNet and trained together with the rest of the model. We demonstrate that the multi-speaker ClariNet outperforms state-of-the-art systems in terms of naturalness, because the whole model is jointly optimized in an end-to-end manner.
The cross-speaker emotion transfer task in TTS particularly aims to synthesize speech for a target speaker with the emotion transferred from reference speech recorded by another (source) speaker. During the emotion transfer process, the identity information of the source speaker could also affect the synthesized results, resulting in the issue of speaker leakage. This paper proposes a new method with the aim to synthesize controllable emotional expressive speech and meanwhile maintain the target speakers identity in the cross-speaker emotion TTS task. The proposed method is a Tacotron2-based framework with the emotion embedding as the conditioning variable to provide emotion information. Two emotion disentangling modules are contained in our method to 1) get speaker-independent and emotion-discriminative embedding, and 2) explicitly constrain the emotion and speaker identity of synthetic speech to be that as expected. Moreover, we present an intuitive method to control the emotional strength in the synthetic speech for the target speaker. Specifically, the learned emotion embedding is adjusted with a flexible scalar value, which allows controlling the emotion strength conveyed by the embedding. Extensive experiments have been conducted on a Mandarin disjoint corpus, and the results demonstrate that the proposed method is able to synthesize reasonable emotional speech for the target speaker. Compared to the state-of-the-art reference embedding learned methods, our method gets the best performance on the cross-speaker emotion transfer task, indicating that our method achieves the new state-of-the-art performance on learning the speaker-independent emotion embedding. Furthermore, the strength ranking test and pitch trajectories plots demonstrate that the proposed method can effectively control the emotion strength, leading to prosody-diverse synthetic speech.
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are constrained in the offline scenario. In this work, we propose the Streaming Unmixing and Recognition Transducer (SURT) for end-to-end multi-talker speech recognition. Our model employs the Recurrent Neural Network Transducer (RNN-T) as the backbone that can meet various latency constraints. We study two different model architectures that are based on a speaker-differentiator encoder and a mask encoder respectively. To train this model, we investigate the widely used Permutation Invariant Training (PIT) approach and the Heuristic Error Assignment Training (HEAT) approach. Based on experiments on the publicly available LibriSpeechMix dataset, we show that HEAT can achieve better accuracy compared with PIT, and the SURT model with 150 milliseconds algorithmic latency constraint compares favorably with the offline sequence-to-sequence based baseline model in terms of accuracy.
As an indispensable part of modern human-computer interaction system, speech synthesis technology helps users get the output of intelligent machine more easily and intuitively, thus has attracted more and more attention. Due to the limitations of high complexity and low efficiency of traditional speech synthesis technology, the current research focus is the deep learning-based end-to-end speech synthesis technology, which has more powerful modeling ability and a simpler pipeline. It mainly consists of three modules: text front-end, acoustic model, and vocoder. This paper reviews the research status of these three parts, and classifies and compares various methods according to their emphasis. Moreover, this paper also summarizes the open-source speech corpus of English, Chinese and other languages that can be used for speech synthesis tasks, and introduces some commonly used subjective and objective speech quality evaluation method. Finally, some attractive future research directions are pointed out.
The unified streaming and non-streaming two-pass (U2) end-to-end model for speech recognition has shown great performance in terms of streaming capability, accuracy, real-time factor (RTF), and latency. In this paper, we present U2++, an enhanced version of U2 to further improve the accuracy. The core idea of U2++ is to use the forward and the backward information of the labeling sequences at the same time at training to learn richer information, and combine the forward and backward prediction at decoding to give more accurate recognition results. We also proposed a new data augmentation method called SpecSub to help the U2++ model to be more accurate and robust. Our experiments show that, compared with U2, U2++ shows faster convergence at training, better robustness to the decoding method, as well as consistent 5% - 8% word error rate reduction gain over U2. On the experiment of AISHELL-1, we achieve a 4.63% character error rate (CER) with a non-streaming setup and 5.05% with a streaming setup with 320ms latency by U2++. To the best of our knowledge, 5.05% is the best-published streaming result on the AISHELL-1 test set.