Do you want to publish a course? Click here

Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data

342   0   0.0 ( 0 )
 Added by Angela Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a phenomenological class of models where dark matter converts to dark radiation in the low redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark matter density with two extra parameters, and may be able to help alleviate the observed discrepancies between early- and late-time probes of the universe. We investigate how the conversion affects key cosmological observables such as the CMB temperature and matter power spectra. Combining 3x2pt data from Year 1 of the Dark Energy Survey, {it Planck}-2018 CMB temperature and polarization data, supernovae (SN) Type Ia data from Pantheon, and baryon acoustic oscillation (BAO) data from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has converted to dark radiation and the rate of this conversion. The fraction of the dark matter that has converted since the beginning of the universe in units of the current amount of dark matter, $zeta$, is constrained at 68% confidence level to be $<0.32$ for DES-Y1 3x2pt data, $<0.030$ for CMB+SN+BAO data, and $<0.037$ for the combined dataset. The probability that the DES and CMB+SN+BAO datasets are concordant increases from 4% for the $Lambda$CDM model to 8% (less tension) for DMDR. The tension in $S_8 = sigma_8 sqrt{Omega_{rm m}/0.3}$ between DES-Y1 3x2pt and CMB+SN+BAO is slightly reduced from $2.3sigma$ to $1.9sigma$. We find no reduction in the Hubble tension when the combined data is compared to distance-ladder measurements in the DMDR model. The maximum-posterior goodness-of-fit statistics of DMDR and $Lambda$CDM model are comparable, indicating no preference for the DMDR cosmology over $Lambda$CDM.



rate research

Read More

It has been suggested that late-universe dark matter decays can alleviate the tension between measurements of $H_0$ in the local universe and its value inferred from cosmic microwave background fluctuations. Decaying dark matter can potentially account for this discrepancy as it reshuffles the energy density between matter and radiation and as a result allows dark energy to become dominant at earlier times. We show that the low multipoles amplitude of the cosmic microwave background anisotropy power spectrum severely constrains the feasibility of late-time decays as a solution to the $H_0$ tension.
We investigate constraints on scalar dark matter (DM) by analyzing the Lyman-alpha forest, which probes structure formation at medium and small scales, and also by studying its cosmological consequences at high and low redshift. For scalar DM that constitutes more than 30% of the total DM density, we obtain a lower limit m >~ 10^{-21} eV for the mass of scalar DM. This implies an upper limit on the initial field displacement (or the decay constant for an axion-like field) of phi <~ 10^{16} GeV. We also derive limits on the energy scale of cosmic inflation and establish an upper bound on the tensor-to-scalar ratio of r < 10^{-3} in the presence of scalar DM. Furthermore, we show that there is very little room for ultralight scalar DM to solve the small-scale crisis of cold DM without spoiling the Lyman-alpha forest results. The constraints presented in this paper can be used for testing generic theories that contain light scalar fields.
We study the cosmological effects of two-body dark matter decays where the products of the decay include a massless and a massive particle. We show that if the massive daughter particle is slightly warm it is possible to relieve the tension between distance ladder measurements of the present day Hubble parameter with measurements from the cosmic microwave background.
We present the first cosmological constraint on dark matter scattering with protons in the early Universe for the entire range of dark matter masses between 1 keV and 1 TeV. This constraint is derived from the Planck measurements of the cosmic microwave background (CMB) temperature and polarization anisotropy, and the CMB lensing anisotropy. It improves upon previous CMB constraints by many orders of magnitude, where limits are available, and closes the gap in coverage for low-mass dark matter candidates. We focus on two canonical interaction scenarios: spin-independent and spin-dependent scattering with no velocity dependence. Our results exclude (with 95% confidence) spin-independent interactions with cross sections greater than $5.3 times 10^{-27}$ cm$^2$ for 1 keV, $3.0 times 10^{-26}$ cm$^2$ for 1 MeV, $1.7 times 10^{-25}$ cm$^2$ for 1 GeV, and $1.6 times 10^{-23}$ cm$^2$ for 1 TeV dark matter mass. Finally, we discuss the implications of this study for dark matter physics and future observations.
The existence of dark radiation that is completely decoupled from the standard model in the early Universe leaves open the possibility of an associated dark radiation isocurvature mode. We show that the presence of dark radiation isocurvature leads to spatial variation in the primordial abundances of helium and deuterium due to spatial variation in $N_{rm eff}$ during Big Bang nucleosynthesis. We use the result to constrain the existence of such an isocurvature mode on scales down to $sim 1$ Mpc scales. By measuring the excess variance in the primordial helium to hydrogen and deuterium to hydrogen ratio in different galaxies, we constrain the variance in average isocurvature in a galaxy to be less than $0.13/Delta bar{N}_{rm eff}$ at 95% confidence. Here $Delta bar{N}_{rm eff}$ is the spatially averaged increase in $N_{rm eff}$ due to the additional dark radiation component.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا