Piezoelectric networks and ferroelectric moire superlattice domains in twistronic WS$_2$/MoS$_2$ and WSe$_2$/MoSe$_2$ bilayers


Abstract in English

Twistronic van der Waals heterostrutures offer exciting opportunities for engineering optoelectronic properties of nanomaterials. Here, we use multiscale modeling to study trapping of charge carriers and excitons by ferroelectric polarisation and piezoelectric charges by domain structures in twistronic WX$_2$/MoX$_2$ bilayers (X=S,Se). For almost aligned 2H-type bilayers, we find that holes and electrons are trapped in the opposite -- WMo and XX (tungsten over molybdenum {it versus} overlaying chalcogens) -- corners of the honeycomb domain wall network, swapping their position at a twist angle $0.2^{circ}$, with XX corners providing $30$,meV deep traps for the interlayer excitons for all angles. In 3R-type bilayers, both electrons and holes are trapped in triangular 3R stacking domains, where WX$_2$ chalcogens set over MoX$_2$ molybdenums, which act as $130$,meV deep quantum boxes for interlayer excitons for twist angles $lesssim 1^{circ}$, for larger angles shifting towards domain wall network XX stacking sites.

Download