Alternative dark matter phenomenology in a general $U(1)_X$ extension of the Standard Model


Abstract in English

The existence of the neutrino mass and flavor mixing have been experimentally verified. These phenomena strongly motivate to extend the Standard Model (SM). Amongst many possibilities, a simple and interesting extension of the SM can be investigated using a general U$(1)_X$ extension of the SM gauge group. Demanding the cancellation of the gauge and mixed gauge gravity anomalies, three right handed neutrinos are introduced in this model where the U$(1)_X$ charge assignment becomes a linear combination of U$(1)_{rm{B-L}}$ and U$(1)_Y$ hyper-charges. After the U$(1)_X$ breaking, an additional neutral gauge boson, $Z^prime$ is evolved and the neutrino mass is generated by the seesaw mechanism. In such a model we investigate the properties of a Dark Matter (DM) candidate which is a massive weakly interacting particle and Dirac type in nature. The stability of the DM is protected by its U$(1)_X$ charge. Using the current bounds on the search results of $Z^prime$ at the Large Hadron Collider (LHC) and the dark matter relic abundance we find a phenomenologically viable parameter space of our scenario.

Download