Do you want to publish a course? Click here

Pressure-induced unconventional quantum phase transition with fractionalization in the coupled ladder antiferromagnet C9H18N2CuBr4

116   0   0.0 ( 0 )
 Added by Tao Hong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics in the spin-1/2 coupled ladder compound C$_9$H$_{18}$N$_2$CuBr$_4$. The applied pressure is demonstrated as a parameter to effectively tune the exchange interactions in the spin Hamiltonian without inducing a structural transition. The single-crystal heat capacity and neutron diffraction measurements reveal that the N$rm acute{e}$el ordered state breaks down at and above a critical pressure $P_{rm c}$$sim$1.0 GPa through a continuous quantum phase transition. The thorough analysis of the critical exponents indicates that such transition with a large anomalous exponent $eta$ into a quantum-disordered state cannot be described by the classic Landaus paradigm. Using inelastic neutron scattering and quantum Monte Carlo methods, the high-pressure regime is proposed as a $Z_2$ quantum spin liquid phase in terms of characteristic fully gapped vison-like and fractionalized excitations in distinct scattering channels.



rate research

Read More

We report on the pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3 by means of nuclear-quadrupole-resonance (NQR) studies conducted under a high pressure. The temperature and pressure dependences of the NQR spectra have revealed a first-order quantum-phase transition (QPT) from an AFM to PM at a critical pressure Pc=2.46 GPa. Despite the lack of an AFM quantum critical point in the P-T phase diagram, we highlight the fact that the unconventional SC occurs in both phases of the AFM and PM. The nuclear spin-lattice relaxation rate 1/T1 in the AFM phase have provided evidence for the uniformly coexisting AFM+SC phase. In the HF-PM phase where AFM fluctuations are not developed, 1/T1 decreases without the coherence peak just below Tc, followed by a power-law like T dependence that indicates an unconventional SC with a line-node gap. Remarkably, Tc has a peak around Pc in the HF-PM phase as well as in the AFM phase. In other words, an SC dome exists with a maximum value of Tc = 230 mK around Pc, indicating that the origin of the pressure-induced HF SC in CeIn3 is not relevant to AFM spin fluctuations but to the emergence of the first-order QPT in CeIn3. When the AFM critical temperature is suppressed at the termination point of the first-order QPT, Pc = 2.46 GPa, the diverging AFM spin-density fluctuations emerge at the critical point from the AFM to PM. The results with CeIn3 leading to a new type of quantum criticality deserve further theoretical investigations.
The relationship is established between the Berry phase and spin crossover in condensed matter physics induced by high pressure. It is shown that the geometric phase has topological origin and can be considered as the order parameter for such transition.
We report results of magnetization and $^{31}$P NMR measurements under high pressure up to 6.4~GPa on RbMoOPO$_4$Cl, which is a frustrated square-lattice antiferromagnet with competing nearest-neighbor and next-nearest-neighbor interactions. Anomalies in the pressure dependences of the NMR shift and the transferred hyperfine coupling constants indicate a structural phase transition at 2.6~GPa, which is likely to break mirror symmetry and triggers significant change of the exchange interactions. In fact, the NMR spectra in magnetically ordered states reveal a change from the columnar antiferromagnetic (CAF) order below 3.3~GPa to the N{e}el antiferromagnetic (NAF) order above 3.9~GPa. The spin lattice relaxation rate $1/T_1$ also indicates a change of dominant magnetic fluctuations from CAF-type to NAF-type with pressure. Although the NMR spectra in the intermediate pressure region between 3.3 and 3.9 GPa show coexistence of the CAF and NAF phases, a certain component of $1/T_1$ shows paramagnetic behavior with persistent spin fluctuations, leaving possibility for a quantum disordered phase. The easy-plane anisotropy of spin fluctuations with unusual nonmonotonic temperature dependence at ambient pressure gets reversed to the Ising anisotropy at high pressures. This unexpected anisotropic behavior for a spin 1/2 system may be ascribed to the strong spin-orbit coupling of Mo-4$d$ electrons.
Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in anomalous Hall effect (AHE). However, since large Hall response originating from Berry curvature has been reported in quite limited materials, the detailed mechanism remains unclear at present. Here, we report the discovery of a large AHE triggered by a pressure-induced magnetic phase transition in elemental $alpha$-Mn. The AHE is absent in the non-collinear antiferromagnetic phase at ambient pressure, whereas a large AHE is observed in the weak ferromagnetic phase under high pressure despite the small averaged moment of $sim 0.02 mu_B$/Mn. Our results indicate that the emergence of the AHE in $alpha$-Mn is governed by the symmetry of the underlying magnetic structure, providing a direct evidence of a switch between a zero and non-zero contribution of the Berry curvature across the phase boundary. $alpha$-Mn can be an elemental and tunable platform to reveal the role of Berry curvature in AHE.
Inelastic neutron scattering and bulk magnetic susceptibility studies of the quantum S=1/2 spin ladder system IPA-CuCl3 are performed under hydrostatic pressure. The pressure dependence of the spin gap $Delta$ is determined. At $P=1.5$ GPa it is reduced to $Delta=0.79$ meV from $Delta=1.17$ meV at ambient pressure. The results allow us to predict a soft-mode quantum phase transition in this system at P$_mathrm{c}sim 4$ GPa. The measurements are complicated by a proximity of a structural phase transition that leads to a deterioration of the sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا