No Arabic abstract
A systematic analysis of nucleon-nucleon scattering amplitudes is available up to a laboratory energy of $3$~GeV in case of the $pp$ system and up to $1.2$ GeV for $pn$. At higher energies there is only incomplete experimental information on $pp$ elastic scattering, whereas data for the $pn$ system are very scarce. We apply the spin-dependent Glauber theory to calculate spin observables of $pd$ elastic scattering at $3$-$50$ GeV/c using $pp$ amplitudes available in the literature and parametrized within the Regge formalism. The calculated vector $A_y^p$, $A_y^d$ and tensor $A_{xx}$, $A_{yy}$ analyzing powers and the spin-correlation coefficients $C_{y,y}$, $C_{x,x}$, $C_{yy,y}$, $C_{xx,y}$ can be measured at SPD NICA and, thus, will provide a test of the used $pN$ amplitudes.
We propose to perform measurements of asymmetries of the Drell-Yan (DY) pairs production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. The measurements of asymmetries in production of J/Psi and direct photons will be performed as well simultaneously with DY using dedicated triggers. The set of these measurements will supply complete information for tests of the quark-parton model of nucleons at the QCD twist-two level with minimal systematic errors.
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the $^{2}{rm H}(vec p,d){p}$ and ${rm H}(vec d,d){p}$ reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.
The SPD experiment at the future NICA collider at JINR (Dubna, Russia) aims to investigate the nucleon spin structure and polarization phenomena in collisions of longitudinally and transversely polarized protons and deuterons at $sqrt{s}$ up to 27 GeV and luminosity up to 10$^{32}$ cm$^{-2}$ s$^{-1}$. Measurement of asymmetries in the Drell-Yan pairs, charmonium and prompt photon production can provide an access to the full set of leading twist TMD PDFs in nucleons. The experimental setup is planned as a universal 4$pi$ detector for a wide range of physics tasks.
Calculation of elastic p8Li- and p9Li-scattering differential cross sections, performed at two energies 0.07 and 0.7 GeV/nucleon within Glauber multiple diffraction scattering, are presented and discussed. Three-body wave functions: alpha-t-n (for 8Li) and 7Li-n-n (for 9Li) with realistic potentials of intercluster interactions were used there. Sensitivity of elastic scattering to proton-nucleus interaction and nuclear structure has been studied. In particular, dependence of differential cross section on contribution of higher-order collisions, scattering at core and at periphery nucleons, on contribution of minor wave function components has been calculated. Comparison was made with available experimental data and with optical model calculations.