Do you want to publish a course? Click here

Metal-THINGS: On the metallicity and ionization of ULX sources in NGC 925

114   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the optical properties of three Ultra Luminous X-ray (ULX) sources identified in NGC 925. We use Integral field unit data from the George Mitchel spectrograph in the context of the Metal-THINGS survey. The optical properties for ULX-1 and ULX-3 are presented, while the spaxel associated with ULX-2 had a low S/N, which prevented its analysis. We also report the kinematics and dimensions of the optical nebula associated with each ULX using ancillary data from the PUMA Fabry-Perot spectrograph. A BPT analysis demonstrates that most spaxels in NGC 925 are dominated by star-forming regions, including those associated with ULX-1 and ULX-3. Using the resolved gas-phase metallicities, a negative metallicity gradient is found, consistent with previous results for spiral galaxies, while the ionization parameter tends to increase radially throughout the galaxy. Interestingly, ULX-1 shows a very low gas metallicity for its galactocentric distance, identified by two independent methods, while exhibiting a typical ionization. We find that such low gas metallicity is best explained in the context of the high-mass X-ray binary population, where the low-metallicity environment favours active Roche lobe overflows that can drive much higher accretion rates. An alternative scenario invoking accretion of a low-mass galaxy is not supported by the data in this region. Finally, ULX-3 shows both a high metallicity and ionization parameter, which is consistent with the progenitor being a highly-accreting neutron star within an evolved stellar population region.



rate research

Read More

We report the discovery of a third ULX in NGC 925 (ULX-3), detected in November 2017 by Chandra at a luminosity of $L_{rm X} = (7.8pm0.8)times10^{39}$ erg s$^{-1}$. Examination of archival data for NGC 925 reveals that ULX-3 was detected by Swift at a similarly high luminosity in 2011, as well as by XMM-Newton in January 2017 at a much lower luminosity of $L_{rm X} = (3.8pm0.5)times10^{38}$ erg s$^{-1}$. With an additional Chandra non-detection in 2005, this object demonstrates a high dynamic range of flux of factor >26. In its high-luminosity detections, ULX-3 exhibits a hard power-law spectrum with $Gamma=1.6pm0.1$, whereas the XMM-Newton detection is slightly softer, with $Gamma=1.8^{+0.2}_{-0.1}$ and also well-fitted with a broadened disc model. The long-term light curve is sparsely covered and could be consistent either with the propeller effect or with a large-amplitude superorbital period, both of which are seen in ULXs, in particular those with neutron star accretors. Further systematic monitoring of ULX-3 will allow us to determine the mechanism by which ULX-3 undergoes its extreme variability and to better understand the accretion processes of ULXs.
NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resembles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ($(2$$-$$4)times10^{40}$ erg s$^{-1}$) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.
We present the results from an optical study of the stellar & star formation properties of NGC 925 using the WIYN 3.5m telescope. Images in B,V,R, & H-alpha reveal a galaxy that is fraught with asymmetries. From isophote fits we discover that the bar center is not coincident with the center of the outer isophotes nor with the dynamical center (from Pisano et al. 1998). Cuts across the spiral arms reveal that the northern arms are distinctly different from the southern arm. The southern arm not only appears more coherent, but the peaks in stellar and H-alpha emission are found to be coincident with those of the HI distribution, while no such consistency is present in the northern disk. We also examine the gas surface density criterion for massive star formation in NGC 925, and find that its behavior is more consistent with that for irregular galaxies, than with late-type spirals. In particular, star formation persists beyond the radius at which the gas surface density falls below the predicted critical value for star formation for late-type spirals. Such properties are characteristic of Magellanic spirals, but are present at a less dramatic level in NGC 925, a late-type spiral.
The ionization state and oxygen abundance distribution in a sample of polar-ring galaxies (PRGs) were studied from the long-slit spectroscopic observations carried out with the SCORPIO-2 focal reducer at the Russian 6-m telescope. The sample consists of 15 PRGs classified as `the best candidates in the SDSS-based Polar Ring Catalogue. The distributions of line-of-sight velocities of stellar and gaseous components have given kinematic confirmation of polar structures in 13 galaxies in the sample. We show that ionization by young stars dominates in the external parts of polar discs, while shocks have a significant contribution to gas excitation in the inner parts of polar structures. This picture was predicted earlier in a toy model implying the collision between gaseous clouds on polar orbits with the stellar disc gravitational potential well. The exception is a moderately inclined ring to the host galaxy NGC 5014: the accreted gas in the centre has already settled on the main plane and ionized by young stars, while the gas in the internal part of the ring is excited by shocks. The present study three times increases the number of polar structures with an available oxygen abundance estimation. The measured values of the gas metallicity almost do not depend on the galaxy luminosity. The radial [O/H] gradient in the considered polar rings is shallow or absent. No metal-poor gas was detected. We ruled out the scenario of the formation of polar rings due to cold accretion from cosmic filaments for the considered sample of PRGs.
We present gas-phase metallicity and ionization parameter maps of 25 star-forming face-on spiral galaxies from the SAMI Galaxy Survey Data Release 1. Self-consistent metallicity and ionization parameter maps are calculated simultaneously through an iterative process to account for the interdependence of the strong emission line diagnostics involving ([OII]+[OIII])/H$beta$ (R23) and [OIII]/[OII] (O32). The maps are created on a spaxel-by-spaxel basis because HII regions are not resolved at the SAMI spatial resolution. We combine the SAMI data with stellar mass, star formation rate (SFR), effective radius (R$_e$), ellipticity, and position angles (PA) from the GAMA survey to analyze their relation to the metallicity and ionization parameter. We find a weak trend of steepening metallicity gradient with galaxy stellar mass, with values ranging from -0.03 to -0.20 dex/R$_e$. Only two galaxies show radial gradients in ionization parameter. We find that the ionization parameter has no significant correlation with either SFR, sSFR (specific star formation rate), or metallicity. For several individual galaxies we find structure in the ionization parameter maps suggestive of spiral arm features. We find a typical ionization parameter range of $7.0 < log(q) < 7.8$ for our galaxy sample with no significant overall structure. An ionization parameter range of this magnitude is large enough to caution the use of metallicity diagnostics which have not considered the effects of a varying ionization parameter distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا