Real-time Surgical Environment Enhancement for Robot-Assisted Minimally Invasive Surgery Based on Super-Resolution


Abstract in English

In Robot-Assisted Minimally Invasive Surgery (RAMIS), a camera assistant is normally required to control the position and zooming ratio of the laparoscope, following the surgeons instructions. However, moving the laparoscope frequently may lead to unstable and suboptimal views, while the adjustment of zooming ratio may interrupt the workflow of the surgical operation. To this end, we propose a multi-scale Generative Adversarial Network (GAN)-based video super-resolution method to construct a framework for automatic zooming ratio adjustment. It can provide automatic real-time zooming for high-quality visualization of the Region Of Interest (ROI) during the surgical operation. In the pipeline of the framework, the Kernel Correlation Filter (KCF) tracker is used for tracking the tips of the surgical tools, while the Semi-Global Block Matching (SGBM) based depth estimation and Recurrent Neural Network (RNN)-based context-awareness are developed to determine the upscaling ratio for zooming. The framework is validated with the JIGSAW dataset and Hamlyn Centre Laparoscopic/Endoscopic Video Datasets, with results demonstrating its practicability.

Download