No Arabic abstract
We first derive the boundary theory from the U(1) Chern-Simons theory. We then introduce the Wilson line and discuss the effective action on an $n$-sheet manifold from the back-reaction of the Wilson line. The reason is that the U(1) Chern-Simons theory can provide an exact effective action when introducing the Wilson line. This study cannot be done in the SL(2) Chern-Simons formulation of pure AdS$_3$ Einstein gravity theory. It is known that the expectation value of the Wilson line in the pure AdS$_3$ Einstein gravity is equivalent to entanglement entropy in the boundary theory up to classical gravity. We show that the boundary theory of the U(1) Chern-Simons theory deviates by a self-interaction term from the boundary theory of the AdS$_3$ Einstein gravity theory. It provides a convenient path to the building of minimum surface=entanglement entropy in the SL(2) Chern-Simons formulation. We also discuss the Hayward term in the SL(2) Chern-Simons formulation to compare with the Wilson line approach. To reproduce the entanglement entropy for a single interval at the classical level, we introduce two wedges under a regularization scheme. We propose the quantum generalization by combining the bulk and Hayward terms. The quantum correction of the partition function vanishes. In the end, we exactly calculate the entanglement entropy for a single interval. The pure AdS$_3$ Einstein gravity theory shows a shift of central charge by 26 at the one-loop level. The U(1) Chern-Simons theory does not have such a shift from the quantum effect, and the result is the same in the weak gravitational constant limit. The non-vanishing quantum correction shows the naive quantum generalization of the Hayward term is incorrect.
In the context of the quest for a holographic formulation of quantum gravity, we investigate the basic boundary theory structure for loop quantum gravity. In 3+1 space-time dimensions, the boundary theory lives on the 2+1-dimensional time-like boundary and is supposed to describe the time evolution of the edge modes living on the 2-dimensional boundary of space, i.e. the space-time corner. Focusing on electric excitations -- quanta of area -- living on the corner, we formulate their dynamics in terms of classical spinor variables and we show that the coupling constants of a polynomial Hamiltonian can be understood as the components of a background boundary 2+1-metric. This leads to a deeper conjecture of a correspondence between boundary Hamiltonian and boundary metric states. We further show that one can reformulate the quanta of area data in terms of a SL(2,C) connection, transporting the spinors on the boundary surface and whose SU(2) component would define magnetic excitations (tangential Ashtekar-Barbero connection), thereby opening the door to writing the loop quantum gravity boundary dynamics as a 2+1-dimensional SL(2,C) gauge theory.
An extended field theory is presented that captures the full SL(2) x O(6,6+n) duality group of four-dimensional half-maximal supergravities. The theory has section constraints whose two inequivalent solutions correspond to minimal D=10 supergravity and chiral half-maximal D=6 supergravity, respectively coupled to vector and tensor multiplets. The relation with O(6,6+n) (heterotic) double field theory is thoroughly discussed. Non-Abelian interactions as well as background fluxes are captured by a deformation of the generalised diffeomorphisms. Finally, making use of the SL(2) duality structure, it is shown how to generate gaugings with non-trivial de Roo-Wagemans angles via generalised Scherk-Schwarz ansaetze. Such gaugings allow for moduli stabilisation including the SL(2) dilaton.
We investigate the Wilson line correlators dual to supergravity multiplets in N=4 non-commutative gauge theory on S^2 x S^2. We find additional non-analytic contributions to the correlators due to UV/IR mixing in comparison to ordinary gauge theory. Although they are no longer BPS off shell, their renormalization effects are finite as long as they carry finite momenta. We propose a renormalization procedure to obtain local operators with no anomalous dimensions in perturbation theory. We reflect on our results from dual supergravity point of view. We show that supergravity can account for both IR and UV/IR contributions.
In this paper we prove the equivalence among (i) the weakly coupled worldsheet string theory described by the coset sigma model $frac{SL(2,mathbb{R})_ktimes U(1)}{U(1)}times S^3 times T^4$ with $SL(2,mathbb{R})$ WZW level $kgeq 2$, (ii) the full near horizon theory of the NS5 branes with $k$ NS5 branes wrapping $T^4times S^1$, $pgg1$ F1 strings wrapping $S^1$ and $n$ units of momentum along the $S^1$ and (iii) the single trace $Tbar{T}$ deformation of string theory in $AdS_3times S^3times T^4$. As a check we compute the spectrum of the spacetime theory by performing BRST quantization of the coset description of the worldsheet theory and show that it matches exactly with the one derived in the case of single trace $Tbar{T}$ deformed string theory in $AdS_3$. Secondly, we compute the two-point correlation function of local operators of the spacetime theory using the worldsheet coset approach and reproduce the same two-point function from the supergravity approach.
We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the deformed gauge transformations and the deformed field strength, which is covariant under these transformations. The corresponding Yang-Mills Lagrangian is gauge covariant and reproduces the Maxwell Lagrangian in the commutative limit. Gauge invariance of the action functional requires a non-trivial integration measure which, in the commutative limit, does not reduce to the trivial one. We discuss the physical meaning of such a nontrivial commutative limit, relating it to a nontrivial space-time curvature of the undeformed theory. Moreover, we propose a rescaled kappa-Minkowski non-commutative structure, which exhibits a standard flat commutative limit.