Do you want to publish a course? Click here

A Single-chord Stellar Occultation by the Extreme Trans-Neptunian Object (541132) Lele={a}k={u}honua

247   0   0.0 ( 0 )
 Added by Rodrigo Leiva
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A stellar occultation by the extreme large-perihelion trans-Neptunian object (541132) Lele={a}k={u}honua (also known by the provisional designation of 2015 TG387) was predicted by the Lucky Star project and observed with the Research and Education Collaborative Occultation Network on 2018 October 20 UT. A single detection and a nearby nondetection provide constraints for the size and albedo. When a circular profile is assumed, the radius is $r={110}_{-10}^{+14}$ km, corresponding to a geometric albedo ${p}_{V}={0.21}_{-0.05}^{+0.03}$, for an adopted absolute magnitude of H V = 5.6, typical of other objects in dynamically similar orbits. The occultation also provides a high-precision astrometric constraint.



rate research

Read More

We present results from the first recorded stellar occultation by the large trans-Neptunian object (174567) Varda that was observed on September 10$^{rm th}$, 2018. Varda belongs to the high-inclination dynamically excited population, and has a satellite, Ilmare, which is half the size of Varda. We determine the size and albedo of Varda and constrain its 3D shape and density. Thirteen different sites in the USA monitored the event, five of which detected an occultation by the main body. A best-fitting ellipse to the occultation chords provides the instantaneous limb of the body, from which the geometric albedo is computed. The size and shape of Varda are evaluated, and its bulk density is constrained, using Vardas mass known from previous works. The best-fitting elliptical limb has semi-major (equatorial) axis of $(383 pm 3)$km and an apparent oblateness $0.066pm0.047$ corresponding to an apparent area-equivalent radius $R_{rm equiv}= (370pm7)$km and geometric albedo $p_v=0.099pm 0.002 $ assuming a visual absolute magnitude $H_V=3.81pm0.01$. Using three possible rotational periods for the body (4.76h, 5.91h, and 7.87h), we derive corresponding MacLaurin solutions. Furthermore, given the low-amplitude ($0.06pm0.01$) mag of the single-peaked rotational light-curve for the aforementioned periods, we consider the double periods. For the 5.91h period (the most probable) and its double (11.82h), we find bulk densities and true oblateness of $rho=(1.78pm0.06)$ g cm$^{-3}$, $epsilon=0.235pm0.050$ and $rho=(1.23pm0.04)$ g cm$^{-3}$, $epsilon=0.080pm0.049$. However, it must be noted that the other solutions cannot be excluded just yet.
On 28th January 2018, the large Trans-Neptunian Object (TNO) 2002TC302 occulted a m$_v= $15.3 star with ID 130957813463146112 in the Gaia DR2 stellar catalog. 12 positive occultation chords were obtained from Italy, France, Slovenia and Switzerland. Also, 4 negative detections were obtained near the north and south limbs. This represents the best observed stellar occultation by a TNO other than Pluto, in terms of the number of chords published thus far. From the 12 chords, an accurate elliptical fit to the instantaneous projection of the body, compatible with the near misses, can be obtained. The resulting ellipse has major and minor axes of 543 $pm$ 18 km and 460 $pm$ 11 km, respectively, with a position angle of 3 $pm$ 1 degrees for the minor axis. This information, combined with rotational light curves obtained with the 1.5m telescope at Sierra Nevada Observatory and the 1.23m telescope at Calar Alto observatory, allows us to derive possible 3D shapes and density estimations for the body, based on hydrostatic equilibrium assumptions. The effective area equivalent diameter is $sim$ 84 km smaller than the radiometrically derived diameter using thermal data from Herschel and Spitzer Space Telescopes. This might indicate the existence of an unresolved satellite of up to $sim$ 300 km in diameter, to account for all the thermal flux, although the occultation and thermal diameters are compatible within their error bars given the considerable uncertainty of the thermal results. The existence of a potential satellite also appears to be consistent with other ground-based data presented here. From the effective occultation diameter combined with H$_V$ measurements we derive a geometric albedo of 0.147 $pm$ 0.005, which would be somewhat smaller if 2002TC302 has a satellite. The best occultation light curves do not show any signs of ring features or any signatures of a global atmosphere.
We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS$_2$. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7th, 2014, we obtained the parameters of the best-fitting ellipse to the limb of the body at the time of occultation. We also obtained short-term photometry data for the body in order to derive its rotational phase during the occultation. The rotational light curve present a peak-to-peak amplitude of 0.141 $pm$ 0.009 mag. This allows us to reconstruct the three-dimensional shape of the body, with principal semi-axes $a = 313.8 pm 7.1$ km, $b = 265.5^{+8.8}_{-9.8}$ km, and $c = 247.3^{+26.6}_{-43.6}$ km, which is not consistent with a Jacobi triaxial equilibrium figure. The derived spherical volume equivalent diameter of $548.3 ^{+29.5}_{-44.6}$ km is about 5% larger than the radiometric diameter of 2003~VS$_2$ derived from Herschel data of $523 pm 35$ km, but still compatible with it within error bars. From those results we can also derive the geometric albedo ($0.123 ^{+0.015}_{-0.014}$) and, under the assumption that the object is a Maclaurin spheroid, the density $rho = 1400^{+1000}_{-300}$ for the plutino. The disappearances and reappearances of the star during the occultations do not show any compelling evidence for a global atmosphere considering a pressure upper limit of about 1 microbar for a pure nitrogen atmosphere, nor secondary features (e.g. rings or satellite) around the main body.
We report the discovery and dynamical analysis of 2015 BP$_{519}$, an extreme Trans-Neptunian Object detected detected by the Dark Energy Survey at a heliocentric distance of 55 AU and absolute magnitude Hr= 4.3. The current orbit, determined from a 1110-day observational arc, has semi-major axis $aapprox$ 450 AU, eccentricity $eapprox$ 0.92 and inclination $iapprox$ 54 degrees. With these orbital elements, 2015 BP$_{519}$ is the most extreme TNO discovered to date, as quantified by the reduced Kozai action, which is is a conserved quantity at fixed semi-major axis $a$ for axisymmetric perturbations. We discuss the orbital stability and evolution of this object in the context of the known Solar System, and find that 2015 BP$_{519}$ displays rich dynamical behavior, including rapid diffusion in semi-major axis and more constrained variations in eccentricity and inclination. We also consider the long term orbital stability and evolutionary behavior within the context of the Planet Nine Hypothesis, and find that BP$_{519}$ adds to the circumstantial evidence for the existence of this proposed new member of the Solar System, as it would represent the first member of the population of high-i, $varpi$-shepherded TNOs.
274 - F. L. Rommel 2020
Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these small bodies and has presented exciting results. These observations can provide precise profiles of the involved body, allowing an accurate determination of its size and shape. The goal is to show that even single-chord detections of TNOs allow us to measure their milliarcsecond astrometric positions in the reference frame of the Gaia second data release (DR2). Accurated ephemerides can then be generated, allowing predictions of stellar occultations with much higher reliability. We analyzed data from stellar occultations to obtain astrometric positions of the involved bodies. The events published before the Gaia era were updated so that the Gaia DR2 catalog is the reference. Previously determined sizes were used to calculate the position of the object center and its corresponding error with respect to the detected chord and the International Celestial Reference System (ICRS) propagated Gaia DR2 star position. We derive 37 precise astrometric positions for 19 TNOs and 4 Centaurs. Twenty-one of these events are presented here for the first time. Although about 68% of our results are based on single-chord detection, most have intrinsic precision at the submilliarcsecond level. Lower limits on the diameter and shape constraints for a few bodies are also presented as valuable byproducts. Using the Gaia DR2 catalog, we show that even a single detection of a stellar occultation allows improving the object ephemeris significantly, which in turn enables predicting a future stellar occultation with high accuracy. Observational campaigns can be efficiently organized with this help, and may provide a full physical characterization of the involved object.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا