Do you want to publish a course? Click here

Distinguishing environment-induced non-Markovianity from subsystem dynamics

72   0   0.0 ( 0 )
 Added by Javid Naikoo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum non-Markovianity modifies the environmental decoherence of a system. This situation is enriched in complex systems owing to interactions among subsystems. We consider the problem of distinguishing the multiple sources of non-Markovianity using a simple power spectrum technique, applied to a qubit interacting with another qubit via a Jaynes-Cummings type Hamiltonian and simultaneously subjected to some well known noise channels, such as, the random telegraph noise and non-Markovian amplitude damping, which exhibit both Markovian as well as non-Markovian dynamics under different parameter ranges.



rate research

Read More

It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.
A universal definition of non-Markovianity for open systems dynamics is proposed. It is extended from the classical definition to the quantum realm by showing that a `transition from the Markov to the non-Markov regime occurs when the correlations between the system and the environment, generated by their joint evolution, can no longer be neglected. The suggested definition is based on the comparison between measured correlation functions and those built by assuming that the system is in a Markov regime thus giving a figure of merit of the error coming from this assumption. It is shown that the knowledge of the dynamical map and initial condition of the system is not enough to fully characterise the non-Markovian dynamics of the reduced system. The example of three exactly solvable models, i.e. decoherence and spontaneous emission of the qubit in a bosonic bath and decoherence of the photons polarization induced by interaction with its spacial degrees of freedom, reveals that previously proposed Markovianity criteria and measures which are based on dynamical map analysis fail to recognise non-Markov behaviour.
We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system.
70 - M. Carrera , T. Gorin , C. Pineda 2019
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole parameter space, reveals a wide range of different regimes, ranging from strongly non-Markovian to Markovian dynamics. In contrast to analytical models, all non-Markovianity measures and criteria have to be applied to data with fluctuations and statistical uncertainties. We discuss the practical usefulness of the different approaches.
The question, whether an open system dynamics is Markovian or non-Markovian can be answered by studying the direction of the information flow in the dynamics. In Markovian dynamics, information must always flow from the system to the environment. If the environment is interacting with only one of the subsystems of a bipartite system, the dynamics of the entanglement in the bipartite system can be used to identify the direction of information flow. Here we study the dynamics of a two-level system interacting with an environment, which is also a heat bath, and consists of a large number of two-level quantum systems. Our model can be seen as a close approximation to the `spin bath model at low temperatures. We analyze the Markovian nature of the dynamics, as we change the coupling between the system and the environment. We find the Kraus operators of the dynamics for certain classes of couplings. We show that any form of time-independent or time-polynomial coupling gives rise to non-Markovianity. Also, we witness non-Markovianity for certain parameter values of time-exponential coupling. Moreover, we study the transition from non-Markovian to Markovian dynamics as we change the value of coupling strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا