Do you want to publish a course? Click here

A fast time-stepping strategy for dynamical systems equipped with a surrogate model

107   0   0.0 ( 0 )
 Added by Steven Roberts
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Simulation of complex dynamical systems arising in many applications is computationally challenging due to their size and complexity. Model order reduction, machine learning, and other types of surrogate modeling techniques offer cheaper and simpler ways to describe the dynamics of these systems, but are inexact and introduce additional approximation errors. In order to overcome the computational difficulties of the full complex models, on one hand, and the limitations of surrogate models, on the other, this work proposes a new accelerated time-stepping strategy that combines information from both. This approach is based on the multirate infinitesimal general-structure additive Runge-Kutta (MRI-GARK) framework. The inexpensive surrogate model is integrated with a small timestep to guide the solution trajectory, and the full model is treated with a large timestep to occasionally correct for the surrogate model error and ensure convergence. We provide a theoretical error analysis, and several numerical experiments, to show that this approach can be significantly more efficient than using only the full or only the surrogate model for the integration.



rate research

Read More

In this note we develop a fully explicit cut finite element method for the wave equation. The method is based on using a standard leap frog scheme combined with an extension operator that defines the nodal values outside of the domain in terms of the nodal values inside the domain. We show that the mass matrix associated with the extended finite element space can be lumped leading to a fully explicit scheme. We derive stability estimates for the method and provide optimal order a priori error estimates. Finally, we present some illustrating numerical examples.
In this paper, we propose and analyze a first-order and a second-order time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. The proposed schemes are based on an auxiliary variable approach for the Allen-Cahn equation and delicate treatment of the terms coupling the Allen-Cahn equation and temperature equation. The idea of the former is to introduce suitable auxiliary variables to facilitate construction of high order stable schemes for a large class of gradient flows. We propose a new technique to treat the coupling terms involved in the crystal growth model and introduce suitable stabilization terms to result in totally decoupled schemes, which satisfy a discrete energy law without affecting the convergence order. A delicate implementation demonstrates that the proposed schemes can be realized in a very efficient way. That is, it only requires solving four linear elliptic equations and a simple algebraic equation at each time step. A detailed comparison with existing schemes is given, and the advantage of the new schemes are emphasized. As far as we know this is the first second-order scheme that is totally decoupled, linear, unconditionally stable for the dendritic crystal growth model with variable mobility parameter.
We introduce a new class of Runge-Kutta type methods suitable for time stepping to propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard Runge-Kutta methods, the new methods yield expected convergence properties when standard high order spatial (discontinuous Galerkin) discretizations are used. After presenting a derivation of nonstandard order conditions for these methods, we show numerical examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates. We also report on the discrete stability properties of these methods applied to linear hyperbolic equations.
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 2019], where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsches method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal $L^2(L^2)$-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
We present a projection-based framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work we extend the fully implicit method presented in Khanwale et al. [{it A fully-coupled framework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes.}, arXiv:2009.06628 (2020)], to a block iterative hybrid method. We use a projection-based semi-implicit time discretization for the Navier-Stokes and a fully-implicit time discretization for the Cahn-Hilliard equation. We use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) formulation. Pressure is decoupled using a projection step, which results in two linear positive semi-definite systems for velocity and pressure, instead of the saddle point system of a pressure-stabilized method. All the linear systems are solved using an efficient and scalable algebraic multigrid (AMG) method. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. The overall approach allows the use of relatively large time steps with much faster time-to-solve. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise and Rayleigh-Taylor instability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا