Do you want to publish a course? Click here

Timely Information from Prediction Markets

223   0   0.0 ( 0 )
 Added by Chenkai Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Prediction markets are powerful tools to elicit and aggregate beliefs from strategic agents. However, in current prediction markets, agents may exhaust the social welfare by competing to be the first to update the market. We initiate the study of the trade-off between how quickly information is aggregated by the market, and how much this information costs. We design markets to aggregate timely information from strategic agents to maximize social welfare. To this end, the market must incentivize agents to invest the correct amount of effort to acquire information: quickly enough to be useful, but not faster (and more expensively) than necessary. The market also must ensure that agents report their information truthfully and on time. We consider two settings: in the first, information is only valuable before a deadline; in the second, the value of information decreases as time passes. We use both theorems and simulations to demonstrate the mechanisms.



rate research

Read More

We design a prediction market to recover a complete and fully general probability distribution over a random variable. Traders buy and sell interval securities that pay $1 if the outcome falls into an interval and $0 otherwise. Our market takes the form of a central automated market maker and allows traders to express interval endpoints of arbitrary precision. We present two designs in both of which market operations take time logarithmic in the number of intervals (that traders distinguish), providing the first computationally efficient market for a continuous variable. Our first design replicates the popular logarithmic market scoring rule (LMSR), but operates exponentially faster than a standard LMSR by exploiting its modularity properties to construct a balanced binary tree and decompose computations along the tree nodes. The second design consists of two or more parallel LMSR market makers that mediate submarkets of increasingly fine-grained outcome partitions. This design remains computationally efficient for all operations, including arbitrage removal across submarkets. It adds two additional benefits for the market designer: (1) the ability to express utility for information at various resolutions by assigning different liquidity values, and (2) the ability to guarantee a true constant bounded loss by appropriately decreasing the liquidity in each submarket.
We study the computation of equilibria in prediction markets in perhaps the most fundamental special case with two players and three trading opportunities. To do so, we show equivalence of prediction market equilibria with those of a simpler signaling game with commitment introduced by Kong and Schoenebeck (2018). We then extend their results by giving computationally efficient algorithms for additional parameter regimes. Our approach leverages a new connection between prediction markets and Bayesian persuasion, which also reveals interesting conceptual insights.
Prediction markets are often used as mechanisms to aggregate information about a future event, for example, whether a candidate will win an election. The event is typically assumed to be exogenous. In reality, participants may influence the outcome, and therefore (1) running the prediction market could change the incentives of participants in the process that creates the outcome (for example, agents may want to change their vote in an election), and (2) simple results such as the myopic incentive compatibility of proper scoring rules no longer hold in the prediction market itself. We introduce a model of games of this kind, where agents first trade in a prediction market and then take an action that influences the market outcome. Our two-stage two-player model, despite its simplicity, captures two aspects of real-world prediction markets: (1) agents may directly influence the outcome, (2) some of the agents instrumental in deciding the outcome may not take part in the prediction market. We show that this game has two different types of perfect Bayesian equilibria, which we term LPP and HPP, depending on the values of the belief parameters: in the LPP domain, equilibrium prices reveal expected market outcomes conditional on the participants private information, whereas HPP equilibria are collusive -- participants effectively coordinate in an uninformative and untruthful way.
We introduce the problem of emph{timely} private information retrieval (PIR) from $N$ non-colluding and replicated servers. In this problem, a user desires to retrieve a message out of $M$ messages from the servers, whose contents are continuously updating. The retrieval process should be executed in a timely manner such that no information is leaked about the identity of the message. To assess the timeliness, we use the emph{age of information} (AoI) metric. Interestingly, the timely PIR problem reduces to an AoI minimization subject to PIR constraints under emph{asymmetric traffic}. We explicitly characterize the optimal tradeoff between the PIR rate and the AoI metric (peak AoI or average AoI) for the case of $N=2$, $M=3$. Further, we provide some structural insights on the general problem with arbitrary $N$, $M$.
Walrasian equilibrium prices can be said to coordinate markets: They support a welfare optimal allocation in which each buyer is buying bundle of goods that is individually most preferred. However, this clean story has two caveats. First, the prices alone are not sufficient to coordinate the market, and buyers may need to select among their most preferred bundles in a coordinated way to find a feasible allocation. Second, we dont in practice expect to encounter exact equilibrium prices tailored to the market, but instead only approximate prices, somehow encoding distributional information about the market. How well do prices work to coordinate markets when tie-breaking is not coordinated, and they encode only distributional information? We answer this question. First, we provide a genericity condition such that for buyers with Matroid Based Valuations, overdemand with respect to equilibrium prices is at most 1, independent of the supply of goods, even when tie-breaking is done in an uncoordinated fashion. Second, we provide learning-theoretic results that show that such prices are robust to changing the buyers in the market, so long as all buyers are sampled from the same (unknown) distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا