No Arabic abstract
Gravitational waves are ripples in spacetime generated by the acceleration of astrophysical objects. A direct consequence of general relativity, they were first directly observed in 2015 by the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) observatories. I review the first five years of gravitational wave detections. More than fifty gravitational waves events have been found, emitted by pairs of merging compact objects such as neutron stars and black holes. These signals yield insights into the formation of compact objects and their progenitor stars, enable stringent tests of general relativity and constrain the behavior of matter at densities higher than an atomic nucleus. Mergers that emit both gravitational and electromagnetic waves probe the formation of short gamma ray bursts, the nucleosynthesis of heavy elements, and measure the local expansion rate of the Universe.
We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; other known gravitational-wave events fall below the searchs sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-BBH transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper-limits are stricter than those previously published by an order-of-magnitude.
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron star and black hole parameter space over the individual mass range 1 Msun - 25 Msun and the full range of spin parameters. The cases reported in this study provide a snap-shot of the status of parameter estimation in preparation for the operation of advanced detectors.
We review and strengthen the arguments given by Einstein to derive his first gravitational field equation for static fields and show that, although it was ultimately rejected, it follows from General Relativity (GR) for negligible pressure. Using this equation and considerations folowing directly from the equivalence principle (EP), we show how Schwarzschild metric and other vacum metrics can be obtained immediately. With this results and some basic principles, we obtain the metric in the general spherically symmetric case and the corresponding hydrostatic equilibrium equation. For this metrics we obtain the motion equations in a simple and exact manner that clearly shows the three sources of difference (implied by various aspects of the EP) with respect to the Newtonian case and use them to study the classical tests of GR. We comment on the origin of the problems of Einstein first theory of gravity and discuss how, by removing it the theory could be made consistent and extended to include rotations, we also comments on various conceptual issues of GR as the origin of the gravitational effect of pressure.
We present results from a search for gravitational-wave bursts coincident with a set of two core-collapse supernovae observed between 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016, with a total observational time of 49 days. The search targets gravitational wave transients of unit[10 -- 500]{s} duration in a frequency band of unit[24 -- 2048]{Hz}, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. %All candidate triggers were consistent with the expected background, As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least $sim$ unit[$10^{-8}$]{$mathrm{M_{odot} c^2}$} in gravitational waves.