We show that the homotopy type of a finite oriented Poincar{e} 4-complex is determined by its quadratic 2-type provided its fundamental group is finite and has a dihedral Sylow 2-subgroup. By combining with results of Hambleton-Kreck and Bauer, this applies in the case of smooth oriented 4-manifolds whose fundamental group is a finite subgroup of SO(3). An important class of examples are elliptic surfaces with finite fundamental group.
We construct a functor from the smooth 4-dimensional manifolds to the hyper-algebraic number fields, i.e. fields with non-commutative multiplication. It is proved that that the simply connected 4-manifolds correspond to the abelian extensions. We recover the Rokhlin and Donaldsons Theorems from the Galois theory of the non-commutative fields.
In this paper, we prove a number of inequalities between the signature and the Betti numbers of a 4-manifold with even intersection form. Furthermore, we introduce a new geometric group invariant and discuss some of its properties.
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functions associated to the free abelian covering of $M$. Our invariant takes values in Garoufalidis--Rozanskys space of Jacobi diagrams whose edges are colored by rational functions. It is expected that our invariant gives a lot of nontrivial finite type invariants of 3-manifolds.
We prove that for 4-manifolds $M$ with residually finite fundamental group and non-spin universal covering $Wi M$, the inequality $dim_{mc}Wi Mle 3$ implies the inequality $dim_{mc}Wi Mle 2$.
In this article, we construct countably many mutually non-isotopic diffeomorphisms of some closed non simply-connected 4-manifolds that are homotopic to but not isotopic to the identity, by surgery along $Theta$-graphs. As corollaries of this, we obtain some new results on codimension 1 embeddings and pseudo-isotopies of 4-manifolds. In the proof of the non-triviality of the diffeomorphisms, we utilize a twisted analogue of Kontsevichs characteristic class for smooth bundles, which is obtained by extending a higher dimensional analogue of March{e}--Lescops equivariant triple intersection in configuration spaces of 3-manifolds to allow Lie algebraic local coefficient system.
Daniel Kasprowski
,John Nicholson
,Benjamin Ruppik
.
(2020)
.
"Homotopy classification of 4-manifolds whose fundamental group is dihedral"
.
John Nicholson
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا