No Arabic abstract
Optomechanical crystal cavities have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of an optomechanical crystal cavity operating under ambient conditions as a sensor of submicrometer analytes by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specific modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region.
Nanoscale photonic crystal cavity optomechanical devices enable detection of nanomechanical phenomena with a sensitivity sufficient to observe quantum effects. Here we present the design of a one-dimensional air-mode photonic crystal cavity patterned in a silicon nitride nanobeam, and show that it forms the basis for cavity optomechanical split-beam and paddle nanocavity devices useful for force detection and nonlinear quantum sensing. The air-mode of this device is advantageous for optomechanical coupling, while also having ultrahigh optical quality factor $Q_osim 10^6$ despite its proximity to the light-line and the relatively low refractive index of silicon nitride. Paddle nanocavities realized from this device have a quadratic coupling coefficient $g^{(2)}/2pi$~=~10~MHz/nm$^{2}$, and their performance within the context of quantum optomechanics experiments is analyzed.
Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film lithium niobate (LN) that simultaneously supports high-$Q$ optical and mechanical modes, and where the mechanical modes are coupled piezoelectrically to microwaves. For optomechanical coupling, we leverage the photoelastic effect in LN by optimizing the device parameters to realize coupling rates $g_0/2piapprox 120~textrm{kHz}$. An optomechanical cooperativity $C>1$ is achieved leading to phonon lasing. Electrodes on the nanoresonator piezoelectrically drive mechanical waves on the beam that are then read out optically allowing direct observation of the phononic bandgap. Quantum coupling efficiency of $etaapprox10^{-8}$ from the input microwave port to the localized mechanical resonance is measured. Improvements of the microwave circuit and electrode geometry can increase this efficiency and bring integrated ultra-low-power modulators and quantum microwave-to-optical converters closer to reality.
We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q>10^6) optical mode of a separate nanobeam optical cavity. Using separate nanobeams provides flexibility, enabling the independent design and optimization of the optics and mechanics of the system. In addition, the small gap (approx. 25 nm) between the two resonators gives rise to a slot mode effect that enables a large zero-point optomechanical coupling strength to be achieved, with g/2pi > 300 kHz in a Si3N4 system at 980 nm and g/2pi approx. 900 kHz in a Si system at 1550 nm. The fact that large coupling strengths to GHz mechanical oscillators can be achieved in SiN is important, as this material has a broad optical transparency window, which allows operation throughout the visible and near-infrared. As an application of this platform, we consider wide-band optical frequency conversion between 1300 nm and 980 nm, using two optical nanobeam cavities coupled on either side to the breathing mode of a mechanical nanobeam resonator.
We detect thermally excited surfaces waves on a submicron SiO 2 layer, including Zenneck and guided modes in addition to Surface Phonon Polaritons. The measurements show the existence of these hybrid thermal-electromagnetic waves from near-(2.7 $mu$m) to far-(11.2 $mu$m) infrared. Their propagation distances reach values on the order of the millimeter, several orders of magnitude larger than on semi-infinite systems. These two features, spectral broadness and long range propagation, make these waves good candidates for near-field applications both in optics and thermics due to their dual nature.
We develop a compact whispering-gallery-mode (WGM) sensing system by integrating multiple components, including a tunable laser, a temperature controller, a function generator, an oscilloscope, a photodiode detector, and a testing computer, into a phone-sized embedded system. We demonstrate a thermal sensing experiment by using this portable system. Such a system successfully eliminates bulky measurement equipment required for characterizing optical resonators and will open up new avenues for practical sensing applications by using ultra-high Q WGM resonators.