Do you want to publish a course? Click here

Design Of Drug-Like Protein-Protein Interaction Stabilizers Guided By Chelation-Controlled Bioactive Conformation Stabilization

90   0   0.0 ( 0 )
 Added by Isabelle Landrieu
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The protein-protein interactions (PPIs) of 14-3-3 proteins are a model system for studying PPI stabilization. The complex natural product Fusicoccin A stabilizes many 14-3-3 PPIs but is not amenable for use in SAR studies, motivating the search for more drug-like chemical matter. However, drug-like 14-3-3 PPI stabilizers enabling such study have remained elusive. An X-ray crystal structure of a PPI in complex with an extremely low potency stabilizer uncovered an unexpected non-protein interacting, ligand-chelated Mg 2+ leading to the discovery of metal ion-dependent 14-3-3 PPI stabilization potency. This originates from a novel chelation-controlled bioactive conformation stabilization effect. Metal chelation has been associated with pan-assay interference compounds (PAINS) and frequent hitter behavior, but chelation can evidently also lead to true potency gains and find use as a medicinal chemistry strategy to guide compound optimization. To demonstrate this, we exploited the effect to design the first potent, selective and drug-like 14-3-3 PPI stabilizers.



rate research

Read More

A model to describe the mechanism of conformational dynamics in protein based on matter interactions using lagrangian approach and imposing certain symmetry breaking is proposed. Both conformation changes of proteins and the injected non-linear sources are represented by the bosonic lagrangian with an additional phi^4 interaction for the sources. In the model the spring tension of protein representing the internal hydrogen bonds is realized as the interactions between individual amino acids and nonlinear sources. The folding pathway is determined by the strength of nonlinear sources that propagate through the protein backbone. It is also shown that the model reproduces the results in some previous works.
Proteins perform critical processes in all living systems: converting solar energy into chemical energy, replicating DNA, as the basis of highly performant materials, sensing and much more. While an incredible range of functionality has been sampled in nature, it accounts for a tiny fraction of the possible protein universe. If we could tap into this pool of unexplored protein structures, we could search for novel proteins with useful properties that we could apply to tackle the environmental and medical challenges facing humanity. This is the purpose of protein design. Sequence design is an important aspect of protein design, and many successful methods to do this have been developed. Recently, deep-learning methods that frame it as a classification problem have emerged as a powerful approach. Beyond their reported improvement in performance, their primary advantage over physics-based methods is that the computational burden is shifted from the user to the developers, thereby increasing accessibility to the design method. Despite this trend, the tools for assessment and comparison of such models remain quite generic. The goal of this paper is to both address the timely problem of evaluation and to shine a spotlight, within the Machine Learning community, on specific assessment criteria that will accelerate impact. We present a carefully curated benchmark set of proteins and propose a number of standard tests to assess the performance of deep learning based methods. Our robust benchmark provides biological insight into the behaviour of design methods, which is essential for evaluating their performance and utility. We compare five existing models with two novel models for sequence prediction. Finally, we test the designs produced by these models with AlphaFold2, a state-of-the-art structure-prediction algorithm, to determine if they are likely to fold into the intended 3D shapes.
Background: Typically, proteins perform key biological functions by interacting with each other. As a consequence, predicting which protein pairs interact is a fundamental problem. Experimental methods are slow, expensive, and may be error prone. Many computational methods have been proposed to identify candidate interacting pairs. When accurate, they can serve as an inexpensive, preliminary filtering stage, to be followed by downstream experimental validation. Among such methods, sequence-based ones are very promising. Results: We present MPS(T&B) (Maximum Protein Similarity Topological and Biological), a new algorithm that leverages both topological and biological information to predict protein-protein interactions. We comprehensively compare MPS(T) and MPS(T&B) with state-of-the-art approaches on reliable PPIs datasets, showing that they have competitive or higher accuracy on biologically validated test sets. Conclusion: MPS(T) and MPS(T&B) are topological only and topological plus sequence-based computational methods that can effectively predict the entire human interactome.
From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typical specific features that robustly distinguish protein-protein interaction networks from other classes of networks, in spite of possible statistical fluctuations of the underlying data.
Functional protein-protein interactions are crucial in most cellular processes. They enable multi-protein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interacting partners, and thus in correlations between their sequences. Pairwise maximum-entropy based models have enabled successful inference of pairs of amino-acid residues that are in contact in the three-dimensional structure of multi-protein complexes, starting from the correlations in the sequence data of known interaction partners. Recently, algorithms inspired by these methods have been developed to identify which proteins are functional interaction partners among the paralogous proteins of two families, starting from sequence data alone. Here, we demonstrate that a slightly higher performance for partner identification can be reached by an approximate maximization of the mutual information between the sequence alignments of the two protein families. Our mutual information-based method also provides signatures of the existence of interactions between protein families. These results stand in contrast with structure prediction of proteins and of multi-protein complexes from sequence data, where pairwise maximum-entropy based global statistical models substantially improve performance compared to mutual information. Our findings entail that the statistical dependences allowing interaction partner prediction from sequence data are not restricted to the residue pairs that are in direct contact at the interface between the partner proteins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا