Covariant formulation of gluon self-energy in presence of ellipsoidal anisotropy


Abstract in English

In this work, a covariant formulation of the gluon self-energy in presence of ellipsoidal anisotropy is considered. It is shown that the general structure of the gluon self-energy can be written in terms of six linearly independent projection tensors. Similar to the spheroidal anisotropy, mass scales can be introduced for each of the collective modes considering the static limits. With a simplified ellipsoidal generalization of the Romatschke-Strickland form, the angular dependencies of the mass scales are studied. It is observed that, compared to the spheroidal case, additional unstable mode may appear in presence of ellipsoidal anisotropy depending upon the choice of the parameters.

Download