We consider a model of a two-dimensional molecular machine - called Brownian gyrator - that consists of two coordinates coupled to each other and to separate heat baths at temperatures respectively $T_x$ and $T_y$. We consider the limit in which one component is passive, because its bath is cold, $T_x to 0$, while the second is in contact with a hot bath, $T_y > 0$, hence it entrains the passive component in a stochastic motion. We derive an asymmetry relation as a function of time, from which time dependent effective temperatures can be obtained for both components. We find that the effective temperature of the passive element tends to a constant value, which is a fraction of $T_y$, while the effective temperature of the driving component grows without bounds, in fact exponentially in time, as the steady-state is approached.