No Arabic abstract
The phase diagram of $Pr_{1-x}Ca_xMnO_3$ is modified x $le$ 0.3, which suggests a reevaluation of the phase diagram of other manganites in that doping region. Rather than an orbital ordered phase reaching up to high temperatures of approximately 800-1100 K, we propose a loss of spontaneous orbital order already near room temperature. Above this temperature, the phase is characterized by a finite orbital polarization and octahedral tilt pattern. The tilt pattern couples to the Jahn-Teller distortion and thus induces a remaining orbital order, which persists up to high temperatures, where the tilt order is lost as well. This explains the experimental observation of orbital order up to high temperatures. The reevaluation of the orbital order transition is based on observed anomalies of various physical properties at a temperatures of 220-260 K in epitaxial thin films of $Pr_{1-x}Ca_xMnO_3$ x=0.1, i.e.in the photovoltaic effect, electric transport, magnetization, optical and ultrafast transient pump probe studies. Finite-temperature simulations based on a tight-binding model with carefully adjusted parameters from first-principles calculations exhibit an orbital order phase transition at $T_{OO} approx$ 300 K for x=0.1. This is consistent with the experimental observation of a temperature dependent change in lattice parameter for bulk samples of the same doping at 300 K for x=0.1 and 350 K for x=0, typical for a second order phase transition. Since our reassignment of the orbital order phase transition towards lower temperatures challenges a well-established and long-accepted picture, we provide results of multiple complementary measurements as well as a detailed discussion.
We present electron spin resonance data of Ti$^{3+}$ (3$d^1$) ions in single crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is predominantly occupied and owing to the occurrence of orbital order a linear spin chain forms along the crystallographic b axis. This result corroborates recent theoretical LDA+U calculations of the band structure. The temperature dependence of the parameters of the resonance signal suggests a strong coupling between spin and lattice degrees of freedom and gives evidence for a transition to a nonmagnetic ground state at 67 K.
Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and x-ray diffraction measurements with in-situ tunable strain (elasto-XRD) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of $Ba(Fe_{0.96}Co_{0.04})_{2} As_{2}$. The ratio of transport to structural quantities is nearly temperature-independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto-XRD is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of mean field description reveals the intertwined nature of nematicity.
This article reports a detailed x-ray resonant scattering study of the bilayer iridate compound, Sr3Ir2O7, at the Ir L2 and L3 edges. Resonant scattering at the Ir L3 edge has been used to determine that Sr3Ir2O7 is a long-range ordered antiferromagnet below TN 230K with an ordering wavevector, q=(1/2,1/2,0). The energy resonance at the L3 edge was found to be a factor of ~30 times larger than that at the L2. This remarkable effect has been seen in the single layer compound Sr2IrO4 and has been linked to the observation of a Jeff=1/2 spin-orbit insulator. Our result shows that despite the modified electronic structure of the bilayer compound, caused by the larger bandwidth, the effect of strong spin-orbit coupling on the resonant magnetic scattering persists. Using the programme SARAh, we have determined that the magnetic order consists of two domains with propagation vectors k1=(1/2,1/2,0) and k2=(1/2,-1/2,0), respectively. A raster measurement of a focussed x-ray beam across the surface of the sample yielded images of domains of the order of 100 microns size, with odd and even L components, respectively. Fully relativistic, monoelectronic calculations (FDMNES), using the Greens function technique for a muffin-tin potential have been employed to calculate the relative intensities of the L2,3 edge resonances, comparing the effects of including spin-orbit coupling and the Hubbard, U, term. A large L3 to L2 edge intensity ratio (~5) was found for calculations including spin-orbit coupling. Adding the Hubbard, U, term resulted in changes to the intensity ratio <5%.
Vanadium dioxide (VO2) is a model system that has been used to understand closely-occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here we use transmission of spatially averaged infrared ({lambda}=1500 nm) and visible ({lambda}=500 nm) radiations followed by spectroscopy and nanoscale imaging using x-rays ({lambda}=2.25-2.38 nm) to probe the same VO2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occur at significantly lower temperatures than the Mott transition; and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.
The scattering of conduction electrons by crystalline electric field (CEF) excitations may enhance their effective quasiparticle mass similar to scattering from phonons. A wellknown example is Pr metal where the isotropic exchange scattering from inelastic singlet-singlet excitations causes the mass enhancement. An analogous mechanism may be at work in the skutterudite compounds Pr_{1-x}La_xOs_4Sb_12 where close to x=1 the compound develops heavy quasiparticles with a large linear specific heat coefficient. There the low lying CEF states are singlet ground state and a triplet at 8 K. Due to the tetrahedral CEF the main scattering mechanism must be the aspherical Coulomb scattering. We derive the expression for mass enhancement in this model including also the case of dispersive excitations. We show that for small to moderate dispersion there is a strongly field dependent mass enhancement due to the field induced triplet splitting. It is suggested that this effect may be seen in Pr_{1-x}La_xOs_4Sb_12 with suitably large x when the dispersion is small.