Dipole-active collective excitations in moire flat bands


Abstract in English

Collective plasma excitations in moire flat bands display unique properties reflecting strong electron-electron interactions and unusual carrier dynamics in these systems. Unlike the conventional two-dimensional plasmon modes, dispersing as $sqrt{k}$ at low frequencies and plunging into particle-hole continuum at higher frequencies, the moire plasmons pierce through the flat-band continuum and acquire a strong over-the-band character. Due to the complex structure of the moire superlattice unit cell, the over-the-band plasmons feature several distinct branches connected through zone folding in the superlattice Brillouin zone. Using a toy Hubbard model for the correlated insulating order in a flat band, we predict that these high-frequency modes become strongly dipole-active upon the system undergoing charge ordering, with the low-frequency modes gapped out within the correlated insulator gap. Strong dipole moments and sensitivity to charge order make these modes readily accessible by optical measurements, providing a convenient diagnostic of the correlated states.

Download