Do you want to publish a course? Click here

Categories of topological orders I

56   0   0.0 ( 0 )
 Added by Hao Zheng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop the mathematical theory of separable and unitary $n$-categories based on Gaiotto and Johnson-Freyds theory of condensation completion. We use it to study the categories of topological orders by including gapless quantum phases and defects. In particular, we show that all the topological features of a potentially gapless quantum phase can be captured by its topological skeleton, and that the category of the topological skeletons of higher dimensional gapped/gapless quantum phases can be explicitly computed categorically from a simple coslice 1-category.



rate research

Read More

58 - Liang Kong , Hao Zheng 2021
In this second part of a series work, we further develop the theory of higher fusion categories, including center functors, centralizers and group theoretic higher fusion categories. Along the way we prove several conjectures on modular extensions and the representation categories of finite higher groups.
79 - Shawn X. Cui 2016
We construct a state-sum type invariant of smooth closed oriented $4$-manifolds out of a $G$-crossed braided spherical fusion category ($G$-BSFC) for $G$ a finite group. The construction can be extended to obtain a $(3+1)$-dimensional topological quantum field theory (TQFT). The invariant of $4$-manifolds generalizes several known invariants in literature such as the Crane-Yetter invariant from a ribbon fusion category and Yetters invariant from homotopy $2$-types. If the $G$-BSFC is concentrated only at the sector indexed by the trivial group element, a cohomology class in $H^4(G,U(1))$ can be introduced to produce a different invariant, which reduces to the twisted Dijkgraaf-Witten theory in a special case. Although not proven, it is believed that our invariants are strictly different from other known invariants. It remains to be seen if the invariants are sensitive to smooth structures. It is expected that the most general input to the state-sum type construction of $(3+1)$-TQFTs is a spherical fusion $2$-category. We show that a $G$-BSFC corresponds to a monoidal $2$-category with certain extra structure, but that structure does not satisfy all the axioms of a spherical fusion $2$-category given by M. Mackaay. Thus the question of what axioms properly define a spherical fusion $2$-category is open.
Quantum Hall states - the progenitors of the growing family of topological insulators -- are rich source of exotic quantum phases. The nature of these states is reflected in the gapless edge modes, which in turn can be classified as integer - carrying electrons, fractional - carrying fractional charges; and neutral - carrying excitations with zero net charge but a well-defined amount of heat. The latter two may obey anyonic statistics, which can be abelian or non-abelian. The most-studied putative non-abelian state is the spin-polarized filling factor { u}=5/2, whose charge e/4 quasiparticles are accompanied by neutral modes. This filling, however, permits different possible topological orders, which can be abelian or non-abelian. While numerical calculations favor the non-abelian anti-Pfaffian (A-Pf) order to have the lowest energy, recent thermal conductance measurements suggested the experimentally realized order to be the particle-hole Pfaffian (PH-Pf) order. It has been suggested that lack of thermal equilibration among the different edge modes of the A-Pf order can account for this discrepancy. The identification of the topological order is crucial for the interpretation of braiding (interference) operations, better understanding of the thermal equilibration process, and the reliability of the numerical studies. We developed a new method that helps identifying the topological order of the { u}=5/2 state. By creating an interface between the two 2D half-planes, one hosting the { u}=5/2 state and the other an integer { u}=3 state, the interface supported a fractional { u}=1/2 charge mode with 1/2 quantum conductance and a neutral Majorana mode. The presence of the Majorana mode, probed by measuring noise, propagating in the opposite direction to the charge mode, asserted the presence of the PH-Pf order but not that of the A-Pf order.
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two $Z_2$ topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems.
When studying quantum field theories and lattice models, it is often useful to analytically continue the number of field or spin components from an integer to a real number. In spite of this, the precise meaning of such analytic continuations has never been fully clarified, and in particular the symmetry of these theories is obscure. We clarify these issues using Deligne categories and their associated Brauer algebras, and show that these provide logically satisfactory answers to these questions. Simple objects of the Deligne category generalize the notion of an irreducible representations, avoiding the need for such mathematically nonsensical notions as vector spaces of non-integer dimension. We develop a systematic theory of categorical symmetries, applying it in both perturbative and non-perturbative contexts. A partial list of our results is: categorical symmetries are preserved under RG flows; continuous categorical symmetries come equipped with conserved currents; CFTs with categorical symmetries are necessarily non-unitary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا