Do you want to publish a course? Click here

Strong in-plane magnetic field induced reemergent superconductivity in the van der Waals heterointerface of NbSe2 and CrCl3

216   0   0.0 ( 0 )
 Added by Wei Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A magnetic field is generally considered to be incompatible with superconductivity as it tends to spin-polarize electrons and breaks apart the opposite-spin singlet superconducting Cooper pairs. Here, an experimental phenomenon is observed that an intriguing reemergent superconductivity evolves from a conventional superconductivity undergoing a hump-like intermediate phase with a finite electric resistance in the van der Waals heterointerface of layered NbSe2 and CrCl3 flakes. This phenomenon merely occurred when the applied magnetic field is parallel to the sample plane and perpendicular to the electric current direction as compared to the reference sample of a NbSe2 thin flake. The strong anisotropy of the reemergent superconducting phase is pointed to the nature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state driven by the strong interfacial spin-orbit coupling between NbSe2 and CrCl3 layers. The theoretical picture of FFLO state nodes induced by Josephson vortices collectively pinning is presented for well understanding the experimental observation of the reemergent superconductivity. This finding sheds light on an opportunity to search for the exotic FFLO state in the van der Waals heterostructures with strong interfacial spin-orbit coupling.

rate research

Read More

Van der Waals heterostructures have risen as a tunable platform to combine different electronic orders, due to the flexibility in stacking different materials with competing symmetry broken states. Among them, van der Waals ferromagnets such as CrI3 and superconductors as NbSe2 provide a natural platform to engineer novel phenomena at ferromagnet-superconductor interfaces. In particular, NbSe2 is well known for hosting strong spin-orbit coupling effects that influence the properties of the superconducting state. Here we put forward a ferromagnet/NbSe2/ferromagnet heterostructure where the interplay between Ising superconductivity in NbSe2 and magnetism controls the magnetic alignment of the heterostructure. In particular, we show that the interplay between spin-orbit coupling and superconductivity allows controlling magnetic states in van der Waals materials. Our results show how hybrid van der Waals ferromagnet/superconductor heterostructure can be used as a tunable materials platform for superconducting spin-orbitronics.
CrCl3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stages on cooling, with ferromagnetic correlations forming before long range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Finally, we demonstrate that monolayer and few-layer CrCl3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.
We report the first clear observation of interfacial superconductivity on top of FeTe(FT) covered by one quintuple-layer Bi$_2$Te$_3$(BT) forming van-der-Waals heterojunction. Both transport and scanning tunneling spectroscopy measurements confirm the occurrence of superconductivity at a transition temperature T$_c$ = 13~K, when a single-quintuple-layer BT is deposited on the non-superconducting FT surface. The superconductivity gap decays exponentially with the thickness of BT, suggesting it occurs at the BT-FT interface and the proximity length is above 5-6~nm. We also measure the work functions dependence on the thickness of BT, implying a charge transfer may occur at the BT/FT interface to introduce hole doping into the FT layer, which may serve as a possible candidate for the superconducting mechanism. Our BT/FT heterojunction provides a clean system to study the unconventional interfacial superconductivity.
We grew the single crystals of the SnAs-based van der Waals (vdW)-type superconductor NaSn$_2$As$_2$ and systematically measured its resistivity, specific heat, and ultralow-temperature thermal conductivity. The superconducting transition temperature $T_c$ = 1.60 K of our single crystal is 0.3 K higher than that previously reported. A weak but intrinsic anomaly situated at 193 K is observed in both resistivity and specific heat, which likely arises from a charge-density-wave (CDW) instability. Ultralow-temperature thermal conductivity measurements reveal a fully-gapped superconducting state with a negligible residual linear term in zero magnetic field, and the field dependence of $kappa_0 / T$ further suggests NaSn$_2$As$_2$ is an $s$-wave superconductor.
Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa while superconductivity remains. An abnormally increased Tc up to 6.1 K has been observed in the decompression process while the GeH remained amorphous. Thorough in-situ high-pressure synchrotron X-ray diffraction and in-situ high-pressure Raman spectroscopy with the density functional theory simulations suggest that the superconductivity of GeH should be attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure. The decompression-driven superconductivity enhancement arises from pressure-induced phonon softening related to an in-plane Ge-Ge phonon mode. As an amorphous metal hydride superconductor, GeH provides a platform to study amorphous hydride superconductivity in layered vdW materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا