Do you want to publish a course? Click here

Functional Prescription for EFT Matching

78   0   0.0 ( 0 )
 Added by Zhengkang Zhang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We simplify the one-loop functional matching formalism to develop a streamlined prescription. The functional approach is conceptually appealing: all calculations are performed within the UV theory at the matching scale, and no prior determination of an Effective Field Theory (EFT) operator basis is required. Our prescription accommodates any relativistic UV theory that contains generic interactions (including derivative couplings) among scalar, fermion, and vector fields. As an example application, we match the singlet scalar extended Standard Model (SM) onto SMEFT.



rate research

Read More

This paper presents STrEAM (SuperTrace Evaluation Automated for Matching), a Mathematica package that calculates all functional supertraces which arise when matching a generic UV model onto a relativistic Effective Field Theory (EFT) at one loop and to arbitrary order in the heavy mass expansion. STrEAM implements the covariant derivative expansion to automate the most tedious step of the streamlined functional matching prescription presented in arXiv:2011.02484 . The code and an example notebook are available at https://www.github.com/EFTMatching/STrEAM .
We present SuperTracer, a Mathematica package aimed at facilitating the functional matching procedure for generic UV models. This package automates the most tedious parts of one-loop functional matching computations. Namely, the determination and evaluation of all relevant supertraces, including loop integration and Dirac algebra manipulations. The current version of SuperTracer also contains a limited set of output simplifications. However, a further reduction of the output to a minimal basis using Fierz identities, integration by parts, simplification of Dirac structures, and/or light field redefinitions might still be necessary. The code and example notebooks are publicly available at https://gitlab.com/supertracer/supertracer.
We use effective field theory to compute the influence of nuclear structure on precision calculations of atomic energy levels. As usual, the EFTs effective couplings correspond to the various nuclear properties (such as the charge radius, nuclear polarizabilities, Friar and Zemach moments {it etc.}) that dominate its low-energy electromagnetic influence on its surroundings. By extending to spinning nuclei the arguments developed for spinless ones in {tt arXiv:1708.09768}, we use the EFT to show -- to any fixed order in $Zalpha$ (where $Z$ is the atomic number and $alpha$ the fine-structure constant) and the ratio of nuclear to atomic size -- that nuclear properties actually contribute to electronic energies through fewer parameters than the number of these effective nuclear couplings naively suggests. Our result is derived using a position-space method for matching effective parameters to nuclear properties in the EFT, that more efficiently exploits the simplicity of the small-nucleus limit in atomic systems. By showing that precision calculations of atomic spectra depend on fewer nuclear uncertainties than naively expected, this observation allows the construction of many nucleus-independent combinations of atomic energy differences whose measurement can be used to test fundamental physics (such as the predictions of QED) because their theoretical uncertainties are not limited by the accuracy of nuclear calculations. We provide several simple examples of such nucleus-free predictions for Hydrogen-like atoms.
110 - Zhengkang Zhang 2016
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed covariant diagrams. The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
We investigate the sensitivity of the FASER$ u$ detector to new physics in the form of non-standard neutrino interactions. FASER$ u$, which has recently been installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism -- which is applicable to any current and future neutrino experiment -- is based on the Standard Model Effective Theory~(SMEFT) and its counterpart, Weak Effective Field Theory~(WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER$ u$ will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER$ u$ constraints will become comparable to existing limits - some of them derived for the first time in this paper - already with $150~$fb${}^{-1}$ of data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا