Do you want to publish a course? Click here

Electronic structure correspondence of singlet-triplet scale separation in strained Sr2RuO4

84   0   0.0 ( 0 )
 Added by Swagata Acharya
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

At a temperature of roughly 1,K, ce{Sr2RuO4} undergoes a transition from a normal Fermi liquid to a superconducting phase. Even while the former is relatively simple and well understood, the superconducting state is not even after 25 years of study. More recently it has been found that critical temperatures can be enhanced by application of uniaxial strain, up to a critical strain, after which it falls off. In this work, we take an `instability approach and seek for divergences in susceptibilities. This provides an unbiased way to distinguish tendencies to competing ground states. We show that in the unstrained compound the singlet and triplet instabilities of the normal Fermi liquid phase are closely spaced. Under uniaxial strain electrons residing on all orbitals contributing to the Fermiology become more coherent while the electrons of Ru-$d_{xy}$ character become heavier and electrons of Ru-$d_{xz,yz}$ characters become lighter. In the process, Im,$chi(mathbf{q},omega)$ increases rapidly around the incommensurate vector $mathbf{q}{=}(0.3,0.3,0)2pi/a$ while it gets suppressed at all other commensurate vectors, in particular at $q{=}0$, which is essential for spin-triplet superconductivity. Thus the triplet superconducting instability remains the lagging instability of the system and the singlet instability enhances under strain, leading to a large energy-scale separation between these competing instabilities. At large strain an instability to a spin density wave overtakes the superconducting one. The analysis relies on a high-fidelity, emph{ab initio} description of the one-particle properties and two-particle susceptibilities, based on the Quasiparticle Self-Consistent emph{GW} approximation augmented by Dynamical Mean Field theory. This approach is described and its high fidelity confirmed by comparing to observed one- and two-particle properties.



rate research

Read More

We study the Coulomb-Frohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Frohlich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard $U$. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.
We report magnetic properties of epitaxial thin films of the itinerant ferromagnet SrRuO3 deposited on the cleaved ab surface of the spin-triplet superconductor Sr2RuO4. The films exhibit ferromagnetic transition near 160 K as in the bulk SrRuO3, although the films are under 1.7% compressive strain. The observed magnetization is even higher than that of the bulk SrRuO3. In addition, we newly found that the magnetization relaxation after field removal is strongly anisotropic: two relaxation processes are involved when magnetic domains are aligned along the ab-plane.
244 - Cun Ye , Peng Cai , Runze Yu 2012
Although the mechanism of superconductivity in the cuprates remains elusive, it is generally agreed that at the heart of the problem is the physics of doped Mott insulators. The cuprate parent compound has one unpaired electron per Cu site, and is predicted by band theory to be a half-filled metal. The strong onsite Coulomb repulsion, however, prohibits electron hopping between neighboring sites and leads to a Mott insulator ground state with antiferromagnetic (AF) ordering. Charge carriers doped into the CuO2 plane destroy the insulating phase and superconductivity emerges as the carrier density is sufficiently high. The natural starting point for tackling high Tc superconductivity is to elucidate the electronic structure of the parent Mott insulator and the behavior of a single doped charge. Here we use a scanning tunneling microscope to investigate the atomic scale electronic structure of the Ca2CuO2Cl2 parent Mott insulator of the cuprates. The full electronic spectrum across the Mott-Hubbard gap is uncovered for the first time, which reveals the particle-hole symmetric and spatially uniform Hubbard bands. A single electron donated by surface defect is found to create a broad in-gap electronic state that is strongly localized in space with spatial characteristics intimately related to the AF spin background. The unprecedented real space electronic structure of the parent cuprate sheds important new light on the origion of high Tc superconductivity from the doped Mott insulator perspective.
57 - Shin-Ichi Ikeda 2000
We present the first systematic study on polycrystalline Sr2MoO4 as an electronic analogue to the spin-triplet superconductor Sr2RuO4. The Pauli paramagnetic susceptibility and metallic behaviors of specific heat and electrical resistivity have been observed. The density of states at the Fermi level D(EF) deduced from the results is about three times smaller than that of Sr2RuO4. Any indication of superconductivity intrinsic to Sr2MoO4 has not been observed down to 25 mK, which may correspond to the smaller D(EF). We discuss the origin of the difference in electronic states between Sr2MoO4 and Sr2RuO4.
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is applied to determine the momentum and orbital dependent effective masses and velocities of the electron quasiparticles close to the Fermi level. We demonstrate that the model can provide, among the various computable physical quantities, a very good agreement with the specific heat coefficient and the plasma frequency. Its use is underlined as a realistic input in the analysis of the possible electronic mechanisms related to the superconducting state of Sr2RuO4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا