No Arabic abstract
We report on the search of astrophysical gamma rays with energies in the 100 TeV to several PeV range arriving in directional and temporal coincidence with public alerts from HAWC (TeV gamma rays) and IceCube (neutrinos above ~100 TeV). The observations have been performed with the Carpet-2 air-shower detector at the Baksan Neutrino Observatory, working in the photon-friendly mode since 2018. Photon candidate showers are selected by their low muon content. No significant excess of the photon candidates have been observed, and upper limits on gamma-ray fluences associated with the alerts are obtained. For events with good viewing conditions, the Carpet-2 effective area for photons is of the order of the IceCube effective area for neutrinos of the same energy, so the constraints start to probe the production of neutrinos in fast flares of Galactic sources.
Carpet is an air-shower array at Baksan, Russia, equipped with a large-area muon detector, which makes it possible to separate primary photons from hadrons. We report first results of the search for primary photons with energies E>100 TeV. The experiments ongoing upgrade and future sensitivity are also discussed.
The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of $<1$ coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of $<4$ coincidences per year.
Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energies E_gamma>1 PeV, directionally associated with IceCube high-energy neutrino events, in the data obtained in 3080 days of Carpet-2 live time.
Due to the high energies and long distances to the sources, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz invariance violation (LIV). Superluminal LIV enables the decay of photons at high energy. The High Altitude Water Cherenkov (HAWC) Observatory is among the most sensitive gamma-ray instruments currently operating above 10 TeV. HAWC finds evidence of 100 TeV photon emission from at least four astrophysical sources. These observations exclude, for the strongest of the limits set, the LIV energy scale to $2.2times10^{31}$ eV, over 1800 times the Planck energy and an improvement of 1 to 2 orders of magnitude over previous limits.
Early results of the search for E_gamma>1 PeV cosmic photons from point sources with the data of Carpet-2, an air-shower array equipped with a 175 m^2 muon detector, are presented. They include 95% CL upper limits on PeV photon fluxes from stacked directions of high-energy IceCube neutrino events and from four predefined sources, Crab, Cyg X-3, Mrk 421 and Mrk 501. An insignificant excess of events from Mrk 421 will be further monitored. Prospects of the use of the upgraded installation, Carpet-3 (410 m^2 muon detector), scheduled to start data taking in 2019, for searches of E_gamma>100 TeV photons, are briefly discussed.