Do you want to publish a course? Click here

Cosmological Fluctuations on the Light Cone

74   0   0.0 ( 0 )
 Added by Philip D. Mannheim
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In studying temperature fluctuations in the cosmic microwave background Weinberg has noted that some ease of calculation and insight can be achieved by looking at the structure of the perturbed light cone on which the perturbed photons propagate. In his approach Weinberg worked in a specific gauge and specialized to fluctuations around the standard Robertson-Walker cosmological model with vanishing spatial three-curvature. In this paper we generalize this analysis by providing a gauge invariant treatment in which no choice of gauge is made, and by considering geometries with non-vanishing spatial three-curvature. By using the scalar, vector, tensor fluctuation basis we find that the relevant gauge invariant combinations that appear in the light cone temperature fluctuations have no explicit dependence on the spatial curvature even if the spatial curvature of the background geometry is nonvanishing. We find that a not previously considered, albeit not too consequential, temperature fluctuation at the observer has to be included in order to enforce gauge invariance. As well as working with comoving time we also work with conformal time in which a background metric of any given spatial three-curvature can be written as a time-dependent conformal factor (the comoving time expansion radius as written in conformal time) times a static Robertson-Walker geometry of the same spatial three-curvature. For temperature fluctuations on the light cone this conformal factor drops out identically. Thus the gauge invariant combinations that appear in the photon temperature fluctuations have no explicit dependence on either the conformal factor or the spatial three-curvature at all.



rate research

Read More

We show that Dark Matter consisting of ultralight bosons in a Bose-Einstein condensate induces, via its quantum potential, a small positive cosmological constant which matches the observed value. This explains its origin and why the densities of Dark Matter and Dark Energy are approximately equal.
74 - Hongwei Xiong 2018
It is widely believed that as one of the candidates for dark energy, the cosmological constant should relate directly with the quantum vacuum. Despite decades of theoretical effects, however, there is still no quantitative interpretation of the observed cosmological constant. In this work, we consider the quantum state of the whole universe including the quantum vacuum. Everetts relative-state formulation, vacuum quantum fluctuations and the validity of Einsteins field equation at macroscopic scales imply that our universe wave function might be a superposition of states with different cosmological constants. In the density matrix formulation of this quantum universe, the quasi-thermal equilibrium state is described by a specific cosmological constant with the maximum probability. Without any fitting parameter, the ratio between the vacuum energy density due to the cosmological constant (dark energy) and the critical density of the universe is 68.85% based on simple equations in our theoretic model, which agrees very well with the best current astronomical observations of 68.5%.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
By making a suitable generalization of the Starobinsky stochastic inflation, we propose a classical phase space formulation of stochastic inflation which may be used for a quantitative study of decoherence of cosmological perturbations during inflation. The precise knowledge of how much cosmological perturbations have decohered is essential to the understanding of acoustic oscillations of cosmological microwave background (CMB) photons. In order to show how the method works, we provide the relevant equations for a self-interacting inflaton field. For pedagogical reasons and to provide a link to the field theoretical case, we consider the quantum stochastic harmonic oscillator.
The subject of cosmological backreaction in General Relativity is often approached by coordinate-dependent and metric-based analyses. We present in this letter an averaging formalism for the scalar parts of Einsteins equations that is coordinate-independent and only functionally depends on a metric. This formalism is applicable to general 3+1 foliations of spacetime for an arbitrary fluid with tilted flow. We clarify the dependence on spacetime foliation and argue that this dependence is weak in cosmological settings. We also introduce a new set of averaged equations that feature a global cosmological time despite the generality of the setting, and we put the statistical nature of effective cosmologies into perspective.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا