Do you want to publish a course? Click here

Velocity-intensity asymmetry reversal of solar radial p-modes

73   0   0.0 ( 0 )
 Added by Jordan Philidet
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The development of space-borne missions has significantly improved the quality of the measured spectra of solar-like oscillators. Their $p$-mode line profiles can now be resolved, and the asymmetries inferred for a variety of stars other than the Sun. However, it has been known for a long time that the asymmetries of solar $p$-modes are reversed between the velocity and the intensity spectra. Understanding the origin of this reversal is necessary in order to use asymmetries as a tool for seismic diagnosis. For stars other than the Sun, only the intensity power spectrum is sufficiently resolved to allow for an estimation of mode asymmetries. We recently developed an approach designed to model and predict these asymmetries in the velocity power spectrum of the Sun and to successfully compare them to their observationally derived counterparts. In this paper we expand our model and predict the asymmetries featured in the intensity power spectrum. We find that the shape of the mode line profiles in intensity is largely dependent on how the oscillation-induced variations of the radiative flux are treated, and that modelling it realistically is crucial to understanding asymmetry reversal. Perturbing a solar-calibrated grey atmosphere model, and adopting the quasi-adiabatic framework as a first step, we reproduce the asymmetries observed in the solar intensity spectrum for low-frequency modes. We conclude that, unlike previously thought, it is not necessary to invoke an additional mechanism (e.g. non-adiabatic effects, coherent non-resonant background signal) to explain asymmetry reversal. This additional mechanism is necessary, however, to explain asymmetry reversal for higher-order modes.



rate research

Read More

Spectroscopic high-resolution observations were performed with fiber-fed cross-dispersed echelle spectrographs in order to measure the fluctuations in radial velocities of a sample of bright stars that are likely to undergo solar-like oscillations. Here we report the results for beta Vir (HR4540) from two observing runs carried out in February 2002 with FEROS at the ESO 1.52 m telescope in La Silla (Chile) and ELODIE spectrograph at 1.93 OHP telescope (Observatoire de Haute Provence, France). The analysis of the time series of Doppler shifts from both sites has revealed the presence of an excess power around 1.7 mHz. We discuss the interpretation of this data set in terms of possible p-mode oscillations.
67 - T. W. Milbourne 2019
State of the art radial-velocity (RV) exoplanet searches are currently limited by RV signals arising from stellar magnetic activity. We analyze solar observations acquired over a 3-year period during the decline of Carrington Cycle 24 to test models of RV variation of Sun-like stars. A purpose-built solar telescope at the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) provides disk-integrated solar spectra, from which we extract RVs and $log{R_{rm HK}}$. The Solar Dynamics Observatory (SDO) provides disk-resolved images of magnetic activity. The Solar Radiation and Climate Experiment (SORCE) provides near-continuous solar photometry, analogous to a Kepler light curve. We verify that the SORCE photometry and HARPS-N $log{R_{rm HK}}$ correlate strongly with the SDO-derived magnetic filling factor, while the HARPS-N RV variations do not. To explain this discrepancy, we test existing models of RV variations. We estimate the contributions of the suppression of convective blueshift and the rotational imbalance due to brightness inhomogeneities to the observed HARPS-N RVs. We investigate the time variation of these contributions over several rotation periods, and how these contributions depend on the area of active regions. We find that magnetic active regions smaller than $60 rm Mm^2$ do not significantly suppress convective blueshift. Our area-dependent model reduces the amplitude of activity-induced RV variations by a factor of two. The present study highlights the need to identify a proxy that correlates specifically with large, bright magnetic regions on the surfaces of exoplanet-hosting stars.
124 - Nad`ege Meunier 2021
Stellar activity due to different processes (magnetic activity, photospheric flows) affects the measurement of radial velocities (RV). Radial velocities have been widely used to detect exoplanets, although the stellar signal significantly impacts the detection and characterisation performance, especially for low mass planets. On the other hand, RV time series are also very rich in information on stellar processes. In this lecture, I review the context of RV observations, describe how radial velocities are measured, and the properties of typical observations. I present the challenges represented by stellar activity for exoplanet studies, and describe the processes at play. Finally, I review the approaches which have been developed, including observations and simulations, as well as solar and stellar comparisons.
We report on the current status of the radial velocity monitoring of nearby OB stars to look for binaries with small mass ratios. The combined data of radial velocities using the domestic 1-2 m-class telescopes seems to confirm the variations of radial velocities in a few weeks for four out of ten target single-lined spectroscopic binaries. More data are needed to estimate the exact periods and mass distributions.
314 - L. Prato , G. N. Mace , E. L. Rice 2015
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا