A major challenge in the modeling of ionically conducting glasses is to understand how the large variety of possible chemical compositions and specific structural properties influence ionic transport quantities. Here we revisit and extend a theoretical approach for alkali borophosphate glasses, where changes of conductivity activation energies with the borate to phosphate mixing ratio are related to modifications of the ionic site energy landscape. The landscape modifications are caused by varying amounts of different units forming the glassy network, which lead to spatial redistributions of the counter-charges of the mobile alkali ions. Theoretical approaches are presented to calculate variations of both network former unit concentrations and activation energies with the glass composition. Applications to several alkali borophosphate glasses show good agreement with experimental data.