No Arabic abstract
The interpretation of ego motion and scene change is a fundamental task for mobile robots. Optical flow information can be employed to estimate motion in the surroundings. Recently, unsupervised optical flow estimation has become a research hotspot. However, unsupervised approaches are often easy to be unreliable on partially occluded or texture-less regions. To deal with this problem, we propose CoT-AMFlow in this paper, an unsupervised optical flow estimation approach. In terms of the network architecture, we develop an adaptive modulation network that employs two novel module types, flow modulation modules (FMMs) and cost volume modulation modules (CMMs), to remove outliers in challenging regions. As for the training paradigm, we adopt a co-teaching strategy, where two networks simultaneously teach each other about challenging regions to further improve accuracy. Experimental results on the MPI Sintel, KITTI Flow and Middlebury Flow benchmarks demonstrate that our CoT-AMFlow outperforms all other state-of-the-art unsupervised approaches, while still running in real time. Our project page is available at https://sites.google.com/view/cot-amflow.
Stereo matching is a key component of autonomous driving perception. Recent unsupervised stereo matching approaches have received adequate attention due to their advantage of not requiring disparity ground truth. These approaches, however, perform poorly near occlusions. To overcome this drawback, in this paper, we propose CoT-Stereo, a novel unsupervised stereo matching approach. Specifically, we adopt a co-teaching framework where two networks interactively teach each other about the occlusions in an unsupervised fashion, which greatly improves the robustness of unsupervised stereo matching. Extensive experiments on the KITTI Stereo benchmarks demonstrate the superior performance of CoT-Stereo over all other state-of-the-art unsupervised stereo matching approaches in terms of both accuracy and speed. Our project webpage is https://sites.google.com/view/cot-stereo.
We present an unsupervised optical flow estimation method by proposing an adaptive pyramid sampling in the deep pyramid network. Specifically, in the pyramid downsampling, we propose an Content Aware Pooling (CAP) module, which promotes local feature gathering by avoiding cross region pooling, so that the learned features become more representative. In the pyramid upsampling, we propose an Adaptive Flow Upsampling (AFU) module, where cross edge interpolation can be avoided, producing sharp motion boundaries. Equipped with these two modules, our method achieves the best performance for unsupervised optical flow estimation on multiple leading benchmarks, including MPI-SIntel, KITTI 2012 and KITTI 2015. Particuarlly, we achieve EPE=1.5 on KITTI 2012 and F1=9.67% KITTI 2015, which outperform the previous state-of-the-art methods by 16.7% and 13.1%, respectively.
In this work, we present FFB6D, a Full Flow Bidirectional fusion network designed for 6D pose estimation from a single RGBD image. Our key insight is that appearance information in the RGB image and geometry information from the depth image are two complementary data sources, and it still remains unknown how to fully leverage them. Towards this end, we propose FFB6D, which learns to combine appearance and geometry information for representation learning as well as output representation selection. Specifically, at the representation learning stage, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation. Experimental results show that our method outperforms the state-of-the-art by large margins on several benchmarks. Code and video are available at url{https://github.com/ethnhe/FFB6D.git}.
Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide effective information for optical flow learning. In this paper, we present OccInpFlow, an occlusion-inpainting framework to make full use of occlusion regions. Specifically, a new appearance-flow network is proposed to inpaint occluded flows based on the image content. Moreover, a boundary warp is proposed to deal with occlusions caused by displacement beyond image border. We conduct experiments on multiple leading flow benchmark data sets such as Flying Chairs, KITTI and MPI-Sintel, which demonstrate that the performance is significantly improved by our proposed occlusion handling framework.
Recent works show that mean-teaching is an effective framework for unsupervised domain adaptive person re-identification. However, existing methods perform contrastive learning on selected samples between teacher and student networks, which is sensitive to noises in pseudo labels and neglects the relationship among most samples. Moreover, these methods are not effective in cooperation of different teacher networks. To handle these issues, this paper proposes a Graph Consistency based Mean-Teaching (GCMT) method with constructing the Graph Consistency Constraint (GCC) between teacher and student networks. Specifically, given unlabeled training images, we apply teacher networks to extract corresponding features and further construct a teacher graph for each teacher network to describe the similarity relationships among training images. To boost the representation learning, different teacher graphs are fused to provide the supervise signal for optimizing student networks. GCMT fuses similarity relationships predicted by different teacher networks as supervision and effectively optimizes student networks with more sample relationships involved. Experiments on three datasets, i.e., Market-1501, DukeMTMCreID, and MSMT17, show that proposed GCMT outperforms state-of-the-art methods by clear margin. Specially, GCMT even outperforms the previous method that uses a deeper backbone. Experimental results also show that GCMT can effectively boost the performance with multiple teacher and student networks. Our code is available at https://github.com/liu-xb/GCMT .