Do you want to publish a course? Click here

Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data

179   0   0.0 ( 0 )
 Added by Soshi Okamoto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the latest statistical analyses of superflares on solar-type (G-type main-sequence; effective temperature is 5100 - 6000 K) stars using all of the $Kepler$ primary mission data, and $Gaia$-DR2 (Data Release 2) catalog. We updated the flare detection method from our previous studies by using high-pass filter to remove rotational variations caused by starspots. We also examined the sample biases on the frequency of superflares, taking into account gyrochronology and flare detection completeness. The sample size of solar-type stars and Sun-like stars (effective temperature is 5600 - 6000 K and rotation period is over 20 days in solar-type stars) are $sim$4 and $sim$12 times, respectively, compared with Notsu et al. (2019, ApJ, 876, 58). As a result, we found 2341 superflares on 265 solar-type stars, and 26 superflares on 15 Sun-like stars: the former increased from 527 to 2341 and the latter from 3 to 26 events compared with our previous study. This enabled us to have a more well-established view on the statistical properties of superflares. The observed upper limit of the flare energy decreases as the rotation period increases in solar-type stars. The frequency of superflares decreases as the stellar rotation period increases. The maximum energy we found on Sun-like stars is $4 times 10^{34}$ erg. Our analysis of Sun-like stars suggest that the Sun can cause superflares with energies of $sim 7 times 10^{33}$ erg ($sim$X700-class flares) and $sim 1 times 10^{34}$ erg ($sim$X1000-class flares) once every $sim$3,000 years and $sim$6,000 years, respectively.



rate research

Read More

Recently, many superflares on solar-type stars were discovered as white-light flares (WLFs). A correlation between the energies (E) and durations (t) of superflares is derived as $tpropto E^{0.39}$, and this can be theoretically explained by magnetic reconnection ($tpropto E^{1/3}$). In this study, we carried out a statistical research on 50 solar WLFs with SDO/HMI to examine the t-E relation. As a result, the t-E relation on solar WLFs ($tpropto E^{0.38}$) is quite similar stellar superflares, but the durations of stellar superflares are much shorter than those extrapolated from solar WLFs. We present the following two interpretations; (1) in solar flares, the cooling timescale of WL emission may be longer than the reconnection one, and the decay time can be determined by the cooling timescale; (2) the distribution can be understood by applying a scaling law $tpropto E^{1/3}B^{-5/3}$ derived from the magnetic reconnection theory.
Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies ($E$) and durations ($tau$): $tau propto E^{0.39}$ (Maehara et al. 2017 $EP& S$, 67, 59), similar to those of solar hard/soft X-ray flares: $tau propto E^{0.2-0.33}$. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out a statistical research on 50 solar WLFs observed with textit{SDO}/HMI and examined the correlation between the energies and durations. As a result, the $E$--$tau$ relation on solar WLFs ($tau propto E^{0.38}$) is quite similar to that on stellar superflares ($tau propto E^{0.39}$). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy. (1) In solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect. (2) The distribution can be understood by applying a scaling law ($tau propto E^{1/3}B^{-5/3}$) derived from the magnetic reconnection theory. In this case, the observed superflares are expected to have 2-4 times stronger magnetic field strength than solar flares.
The Kepler space telescope yielded unprecedented data for the study of solar-like oscillations in other stars. The large samples of multi-year observations posed an enormous data analysis challenge that has only recently been surmounted. Asteroseismic modeling has become more sophisticated over time, with better methods gradually developing alongside the extended observations and improved data analysis techniques. We apply the latest version of the Asteroseismic Modeling Portal (AMP) to the full-length Kepler data sets for 57 stars and the Sun, comprising planetary hosts, binaries, solar-analogs, and active stars. From an analysis of the derived stellar properties for the full sample, we identify a variation of the mixing-length parameter with atmospheric properties. We also derive a linear relation between the stellar age and a characteristic frequency separation ratio. In addition, we find that the empirical correction for surface effects suggested by Kjeldsen and coworkers is adequate for solar-type stars that are not much hotter (Teff < 6200 K) or significantly more evolved (logg > 4.2, <Delta_nu> > 80 muHz) than the Sun. Precise parallaxes from the Gaia mission and future observations from TESS and PLATO promise to improve the reliability of stellar properties derived from asteroseismology.
In addition to its search for extra-solar planets, the NASA Kepler Mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solartype stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.
We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا