No Arabic abstract
In non-Hermitian scattering problems the behavior of the transmission probability is very different from its Hermitian counterpart; it can exceed unity or even be divergent, since the non-Hermiticity can add or remove the probability to and from the scattering system. In the present paper, we consider the scattering problem of a PT-symmetric potential and find a counter-intuitive behavior. In the usual PT-symmetric non-Hermitian system, we would typically find stationary semi-Hermitian dynamics in a regime of weak non-Hermiticity but observe instability once the non-Hermiticity goes beyond an exceptional point. Here, in contrast, the behavior of the transmission probability is strongly non-Hermitian in the regime of weak non-Hermiticity with divergent peaks, while it is superficially Hermitian in the regime of strong non-Hermiticity, recovering the conventional Fabry-Perot-type peak structure. We show that the unitarity of the S-matrix is generally broken in both of the regimes, but is recovered in the limit of infinitely strong non-Hermiticity.
A single unit cell contains all the information about the bulk system, including the topological feature. The topological invariant can be extracted from a finite system, which consists of several unit cells under certain environment, such as a non-Hermitian external field. We investigate a non- Hermitian finite-size Kitaev chain with PT-symmetric chemical potentials. Exact solution at the symmetric point shows that Majorana edge modes can emerge as the coalescing states at exceptional points and PT symmetry breaking states. The coalescing zero mode is the finite-size projection of the conventional degenerate zero modes in a Hermitian infinite system with the open boundary condition. It indicates a variant of the bulk-edge correspondence: The number of Majorana edge modes in a finite non-Hermitian system can be the topological invariant to identify the topological phase of the corresponding bulk Hermitian system.
We propose a novel photonic structure composed of metal nanolayer, Bragg mirror and metal nanolayer. The structure supports resonances that are transitional between Fabry-Perot and Tamm modes. When the dielectric contrast of the DBR is removed these modes are a pair of conventional Fabry-Perot resonances. They spectrally merge into a Tamm mode at high contrast. Such behavior differs from the results for structures supporting Tamm modes reported earlier. The optical properties of the structure in the frequency range of the DBR stop band, including highly beneficial 50% transmittivity through thick structures, are determined by the introduced in the paper hybrid resonances. The results can find a wide range of photonic applications.
Path integral solutions are obtained for the the PT-/non-PT-Symmetric and non-Hermitian Morse Potential. Energy eigenvalues and the corresponding wave functions are obtained.
Eigenspectra of a spinless quantum particle trapped inside a rigid, rectangular, two-dimensional (2D) box subject to diverse inner potential distributions are investigated under hermitian, as well as non-hermitian antiunitary $mathcal{PT}$ (composite parity and time-reversal) symmetric regimes. Four sectors or stripes inscribed in the rigid box comprising contiguously conjoined parallel rectangular segments with one side equaling the entire width of the box are studied. The stripes encompass piecewise constant potentials whose exact, complete energy eigenspectrum is obtained employing matrix mechanics. Various striped potential compositions, viz. real valued ones in the hermitian regime as well as complex, non-hermitian but $mathcal{PT}$ symmetric ones are considered separately and in conjunction, unraveling among typical lowest lying eigenvalues, retention and breakdown scenarios engendered by the $mathcal{PT}$ symmetry, bearing upon the strength of non-hermitian sectors. Some states exhibit a remarkable crossover of symmetry `making and `breaking: while a broken $mathcal{PT}$ gets reinstated for an energy level, higher levels may couple to continue with symmetry breaking. Further, for a charged quantum particle a $mathcal{PT}$ symmetric electric field, furnished with a striped potential backdrop, also reveals peculiar retention and breakdown $mathcal{PT}$ scenarios. Depictions of prominent probability redistributions relating to various potential distributions both under norm-conserving unitary regime for hermitian Hamiltonians and non-conserving ones post $mathcal{PT}$ breakdown are presented.
$mathcal{PT}$-symmetric quantum mechanics has been considered an important theoretical framework for understanding physical phenomena in $mathcal{PT}$-symmetric systems, with a number of $mathcal{PT}$-symmetry related applications. This line of research was made possible by the introduction of a time-independent metric operator to redefine the inner product of a Hilbert space. To treat the dynamics of generic non-Hermitian systems under equal footing, we advocate in this work the use of a time-dependent metric operator for the inner-product between time-evolving states. This treatment makes it possible to always interpret the dynamics of arbitrary (finite-dimensional) non-Hermitian systems in the framework of time-dependent $mathcal{PT}$-symmetric quantum mechanics, with unitary time evolution, real eigenvalues of an energy observable, and quantum measurement postulate all restored. Our work sheds new lights on generic non-Hermitian systems and spontaneous $mathcal{PT}$-symmetry breaking in particular. We also illustrate possible applications of our formulation with well-known examples in quantum thermodynamics.