Do you want to publish a course? Click here

Primordial Monopoles and Strings, Inflation, and Gravity Waves

242   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider magnetic monopoles and strings that appear in non-supersymmetric $SO(10)$ and $E_6$ grand unified models paying attention to gauge coupling unification and proton decay in a variety of symmetry breaking schemes. The dimensionless string tension parameter $Gmu$ spans the range $10^{-6}-10^{-30}$, where $G$ is Newtons constant and $mu$ is the string tension. We show how intermediate scale monopoles with mass $sim 10^{13}-10^{14}$ GeV and flux $lesssim 2.8times 10^{-16}$ ${mathrm{cm}^{-2}mathrm{s}^{-1}mathrm{sr}^{-1}}$, and cosmic strings with $Gmu sim 10^{-11}-10^{-10}$ survive inflation and are present in the universe at an observable level. We estimate the gravity wave spectrum emitted from cosmic strings taking into account inflation driven by a Coleman-Weinberg potential. The tensor-to-scalar ratio $r$ lies between $0.06$ and $0.003$ depending on the details of the inflationary scenario.



rate research

Read More

The NANOGrav collaboration has recently presented its pulsar timing array data which seem compatible with the presence of a stochastic gravity wave background emitted by cosmic strings with a dimensionless string tension $Gmusimeq 2times 10^{-11}-3times 10^{-10}$ at $95%$ confidence level ($G$ is Newtons constant and $mu$ denotes the string tension). However, there is some tension between these results and the previous pulsar timing array bound $Gmulesssim 4times 10^{-11}$ from the PPTA experiment. We propose a relaxation of this tension by invoking primordial inflation which partially inflates the string network. The latter re-enters the horizon at later times after the end of inflation, and thus the short string loops are not produced. This leads to a reduction of the gravity wave spectrum which is more pronounced at higher frequencies. The reconciliation of the NANOGrav results with the PPTA bound is possible provided that the strings re-enter the horizon at adequately late times. We consider an example of a realistic $SO(10)$ model incorporating successful inflation driven by a gauge singlet real scalar field with a Coleman-Weinberg potential. This model leads to the production of intermediate scale topologically stable cosmic strings that survive inflation. We show regions of the parameter space where the tension between NANOGrav and PPTA is alleviated. Finally, we present an example in which both monopoles and strings survive inflation with the above tension resolved.
92 - G. Lazarides , Q. Shafi 2019
We employ a variety of symmetry breaking patterns in $SO(10)$ and $E_6$ Grand Unified Theories to demonstrate the appearance of topological defects including magnetic monopoles, strings, and necklaces. We show that independent of the symmetry breaking pattern, a topologically stable superheavy monopole carrying a single unit of Dirac charge as well as color magnetic charge is always present. Lighter intermediate mass topologically stable monopoles carrying two or three quanta of Dirac charge can appear in $SO(10)$ and $E_6$ models respectively. These lighter monopoles as well as topologically stable intermediate scale strings can survive an inflationary epoch. We also show the appearance of a novel necklace configuration in $SO(10)$ broken to the Standard Model via $SU(4)_ctimes SU(2)_Ltimes SU(2)_R$. It consists of $SU(4)_c$ and $SU(2)_R$ monopoles connected by flux tubes. Necklaces consisting of monopoles and antimonopoles joined together by flux tubes are also identified. Even in the absence of topologically stable strings, a monopole-string system can temporarily appear. This system decays by emitting gravity waves and we provide an example in which the spectrum of these waves is strongly peaked around $10^{-4}~{rm Hz}$ with $Omega_{rm gw}h^2simeq 10^{-12}$. This spectrum should be within the detection capability of LISA.
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represents the matter geometrically induced. We explore about the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude that the boundary terms can be identified as possible sources for the cosmological constant and torsion as the source of magnetic monopoles. We examine an example in which gravitational waves are produced during a de Sitter inflationary expansion of the universe.
In cosmological scenarios based on grand unification, string theory or braneworlds, many kinds of topological or non-topological defects, including monopoles and cosmic strings, are predicted to be formed in the early universe. Here we review specifically the physics of composite objects involving monopoles tied to strings. There is a wide variety of these, including for example dumbbells and necklaces, depending on how many strings attach to each monopole and on the extent to which the various fluxes are confined to the strings. We also briefly survey the prospects for observing such structures, the existing observational limits, and potential evidence for a cosmological role.
We present a successful realization of sneutrino tribrid inflation model based on a gauged $U(1)_{B-L}$ extension of Minimal Supersymmetric Standard Model (MSSM). A single interaction term involving the $B-L$ Higgs field and the right-handed neutrinos serves multiple purposes. These include the generation of heavy Majorana masses for the right-handed neutrinos to provide an explanation for the tiny neutrino masses via the seesaw mechanism, a realistic scenario for reheating and non-thermal leptogenesis with a reheat temperature as low as $10^6$ GeV, and a successful realization of inflation with right-handed sneutrino as the inflaton. The matter parity which helps avoid rapid proton decay survives as a $Z_{2}$ subgroup of a $U(1)$ $R$-symmetry. Depending on the choice of model parameters yields the following predicted range of the tensor to scalar ratio, $3 times 10^{-11}lesssim rlesssim 7times 10^{-4}$ ($ 6 times 10^{-7} lesssim r lesssim 0.01 $), and the running of the scalar spectral index, $-0.00022 lesssim dn_s/dln k lesssim -0.0026$ ($-0.00014 lesssim dn_s/dln k lesssim 0.005$), along with the $B-L$ breaking scale, $ 3 times 10^{14}lesssim M/ text{GeV}lesssim 5 times 10^{15}$ ($ 6 times 10^{15}lesssim M/ text{GeV}lesssim 2 times 10^{16}$), calculated at the central value of the scalar spectral index, $n_s =0.966$, reported by Planck 2018. The possibility of realizing metastable cosmic strings in a grand unified theory setup is briefly discussed. The metastable cosmic string network admits string tension values in the range $10^{-8} lesssim Gmu_s lesssim 10^{-6}$, and predicts a stochastic gravitational wave background lying within the 2-$sigma$ bounds of the recent NANOGrav 12.5-yr data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا