Tropical Fock-Goncharov coordinates for $mathrm{SL}_3$-webs on surfaces I: construction


Abstract in English

For a finite-type surface $mathfrak{S}$, we study a preferred basis for the commutative algebra $mathbb{C}[mathcal{X}_{mathrm{SL}_3(mathbb{C})}(mathfrak{S})]$ of regular functions on the $mathrm{SL}_3(mathbb{C})$-character variety, introduced by Sikora-Westbury. These basis elements come from the trace functions associated to certain tri-valent graphs embedded in the surface $mathfrak{S}$. We show that this basis can be naturally indexed by positive integer coordinates, defined by Knutson-Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock-Goncharov, to the tropical points at infinity of the dual version of the character variety.

Download