Edge Universality for Nonintersecting Brownian Bridges


Abstract in English

In this paper we study fluctuations of extreme particles of nonintersecting Brownian bridges starting from $a_1leq a_2leq cdots leq a_n$ at time $t=0$ and ending at $b_1leq b_2leq cdotsleq b_n$ at time $t=1$, where $mu_{A_n}=(1/n)sum_{i}delta_{a_i}, mu_{B_n}=(1/n)sum_i delta_{b_i}$ are discretization of probability measures $mu_A, mu_B$. Under regularity assumptions of $mu_A, mu_B$, we show as the number of particles $n$ goes to infinity, fluctuations of extreme particles at any time $0<t<1$, after proper rescaling, are asymptotically universal, converging to the Airy point process.

Download