Recommendations for Bayesian hierarchical model specifications for case-control studies in mental health


Abstract in English

Hierarchical model fitting has become commonplace for case-control studies of cognition and behaviour in mental health. However, these techniques require us to formalise assumptions about the data-generating process at the group level, which may not be known. Specifically, researchers typically must choose whether to assume all subjects are drawn from a common population, or to model them as deriving from separate populations. These assumptions have profound implications for computational psychiatry, as they affect the resulting inference (latent parameter recovery) and may conflate or mask true group-level differences. To test these assumptions we ran systematic simulations on synthetic multi-group behavioural data from a commonly used multi-armed bandit task (reinforcement learning task). We then examined recovery of group differences in latent parameter space under the two commonly used generative modelling assumptions: (1) modelling groups under a common shared group-level prior (assuming all participants are generated from a common distribution, and are likely to share common characteristics); (2) modelling separate groups based on symptomatology or diagnostic labels, resulting in separate group-level priors. We evaluated the robustness of these approaches to variations in data quality and prior specifications on a variety of metrics. We found that fitting groups separately (assumptions 2), provided the most accurate and robust inference across all conditions. Our results suggest that when dealing with data from multiple clinical groups, researchers should analyse patient and control groups separately as it provides the most accurate and robust recovery of the parameters of interest.

Download