Pinning effects in a two-dimensional cluster glass


Abstract in English

We study numerically the glass formation and depinning transition of a system of two-dimensional cluster-forming monodisperse particles in presence of pinning disorder. The pairwise interaction potential is nonmonotonic, and is motivated by the intervortex forces in type-$1.5$ superconductors. Such systems can form cluster glasses due to the intervortex interactions following a thermal quench, without underlying disorder. We study the effects of vortex pinning in these systems. We find that a small density of pinning centers of moderate depth has limited effect on vortex glass formation, i.e., formation of vortex glasses is dominated by intervortex interactions. At higher densities pinning can significantly affect glass formation. The cluster glass depinning, under a constant driving force, is found to be plastic, with features distinct from non-cluster-forming systems such as clusters merging and breaking. We find that in general vortices with cluster-forming interaction forces can exhibit stronger pinning effects than regular vortices.

Download